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Logics of information and belief, coalgebraically

Marta B́ılková∗

Faculty of Arts, Charles University, Prague
marta.bilkova@ff.cuni.cz

To model beliefs of rational agents logically, we switch perspective from a traditional, epis-
temic alternatives based semantical approach, to information based approach, and see beliefs
as based on available information or reasonable expectations. Here the modalities of belief
can naturally be seen as diamonds interpreted over information states or probability distribu-
tions. In the former case, the corresponding notion of belief is that of confirmed-by-evidence
belief. Such epistemic logics have been investigated e.g. as modal extensions of distributive
substructural logics [1, 4, 3]. These logical models need to take into account inconsistencies
and incompleteness of information, or uncertainty how likely an event is, based on the evidence
locally available to agents. This naturally leads us to study in general modal extensions of
non-classical logics such as substructural, paraconsistent or many-valued.

In this talk, we will take a general perspective on such modal logics and see them as part
of a broader picture of coalgebraic logics. This allows us to address some metamathematical
properties of the logics in a convenient level of generality, building on as well as generalizing
insights available in coalgebraic logics based on classical logic (detailed references will be given
during the talk). As motivating and running examples we shall mostly use modal logics extend-
ing Belnap-Dunn four valued logic and  Lukasiewicz logic. In particular, we will be interested
in completeness and expressivity results.

As understanding the notion of common belief seems to be crucial to a logical account of
group beliefs and their dynamics, one of the minor aims of this talk is to present common
belief extensions of some epistemic logics based on information states semantics, and prove
their completeness. We will consider both finitary and infinitary proof theory of those. The
strong completeness of the infinitary versions of the logics requires a proper version of extension
lemmata such as Lindenbaum lemma or Belnap’s pair-extension lemma. We can offer a general
abstract algebraic perspective at both lemmata for infinitary logics, widening the area of their
applicability beyond modal extensions of classical logic, and pointing at their limits [2].

[1] B́ılková, M., O. Majer and M. Pelǐs, Epistemic logics for sceptical agents, Journal of Logic
and Computation, 26(6), 2016, pp. 1815-1841, (first published online March 21, 2015).

[2] B́ılková, Cintula P., Lávička T., Lindenbaum and Pair Extension Lemma in Infinitary Logics,
Logic, Language, Information, and Computation. WoLLIC 2018. Springer, 2018.

[3] Punčochář V., Knowledge Is a Diamond, Logic, Language, Information, and Computation.
WoLLIC 2017. Kennedy J., de Queiroz R. (eds), Lecture Notes in Computer Science, vol 10388.
Springer, 2017, pp. 304–320.

[4] Sedlár, I., Epistemic extensions of modal distributive substructural logics, Journal of Logic and
Computation, 26(6), 2016, pp. 1787–1813.

∗The work has been supported by the project SEGA: From Shared Evidence to Group Agency of Czech
Science Foundation and DFG no. 16-07954J.
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Embedding lattice-ordered bi-monoids in involutive

commutative residuated lattices.

Nick Galatos1 and Adam Přenosil2

1 University of Denver, Denver, USA
ngalatos@du.edu

2 Venderbilt University, Nashville, TN, USA
adam.prenosil@gmail.com

Abstract

We describe a doubly-dense embedding of a lattice-ordered bi-monoid in a commutative
residuated lattice. Applications include some old and some new categorical equivalences.

Involutive residuated lattices are important structures and include Boolean algebras, lattice-
ordered groups, MV-algebras and Sugihara monoids, among others. They exhibit a pleasing
symmetry between the meet and join operations, as well as between multiplication and addition,
where the operations in each pair are De Morgan duals of each other, via the negation operation.

We are interested in constructions that produce commutative involutive residuated lattices
and in particular where the negation operation is the one that needs to be added, by extending
an algebraic structure that has the operations of join, meet, multiplication and addition and
satisfies some very natural conditions (most notably the distributivity of multiplication over
join and of addition over meet, as well as the hemidistributivity axiom x(y + z) ≤ xy + z); we
call such structures lattice-ordered bi-monoids.

The main result is an embedding of a lattice-ordered bi-monoid into an involutive commu-
tative residuated lattice such that the original structure sits in a doubly-dense way, reminiscent
of the Dedekind MacNeille completion of a lattice. The proof makes use the machinery of resid-
uated frames tailored to the involutive case and the construction of a suitable such involutive
frame.

We present applications of the embedding and show that the passing from distributive
lattices to Boolean algebras is one example and also the passing from a semilinear Heyting
algebra to an odd Sugihara monoid is another example. The addition of the negations is of
very different nature in these two examples, as the negation constant is either the bottom or
the top of the structure. We are able to obtain new applications, for example by dropping the
semilinearity assumption, thus obtaining a categorical equivalence between arbitrary Heyting
algebras and non-distributive generalizations of odd Sugihara monoids.

4



Regular properties and the existence of proof systems

Rosalie Iemhoff

Utrecht University, Utrecht, the Netherlands
r.iemhoff@uu.nl

During the last hundred years proof systems of all kinds have been developed for a great
variety of logics. These proof systems can often been used to establish that the corresponding
logics have nice properties, such as decidability, interpolation or Skolemization. Results stating
that a logic does not have certain proof systems are less common. In this talk a method
is introduced to prove such negative results. The method establishes a connection between
the existence of certain proof systems for a logic and certain regular properties that the logic
satisfies. The talk focusses on (intuitionistic) modal logics, although the method is applicable to
other logics as well. The regular properties considered in this talk are variants of interpolation,
and the developed method can be used not only to obtain the negative results, but also to
prove uniform interpolation for several classical and intuitionistic modal logics. The method
is in fact inspired by the syntactic proof that intuitionistic logic has uniform interpolation by
Pitts (1992).

The method makes use of sequent calculi, but in a very abstract form. The key property of
rules that this method uses is that of being focussed, a property that expresses the structurality
of a rule. Many of the standard sequent rules for connectives have this property and thus are
focussed. In (Iemhoff, 2016) it is shown that if a modal logic has a proof system that consists
of focussed rules, then it has uniform interpolation, which implies that the many modal logics
without uniform interpolation (Ghilardi and Zawadowski, 2002; Maxsimova, 1977) cannot have
focussed proof systems. The generality of the notions involved makes the method applicable to
many other logics, for example to intermediate logics.

In how far other proof systems lend themselves to this apporach is still not clear. Besides the
technical results above, such unresolved issues as well as related conjectures will be addressed
during the talk.

References

Ghilardi, S. and Zawadowski, M. Sheaves, Games, and Model Completions: A Categorical Approach to
Nonclassical Propositional Logics. Trends in Logic (Book 14). Springer (2002)

Iemhoff, R. Uniform interpolation and sequent calculi in modal logic. Archive for Mathematical Logic,
https://link.springer.com/article/10.1007/s00153-018-0629-0, to appear in print in 2018.

Maxsimova, L.L. Craig’s Theorem in superintuitionistic logics and amalgamated varieties of pseudo-
boolean algebras. Algebra Logika 16 (6): 643–681 (1977)

Pitts, A. On an interpretation of second order quantification in first order intuitionistic propositional
logic. Journal of Symbolic Logic 57 (1): 33–52 (1992)
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Relational semantics, ordered algebras, and quantifiers

for deductive systems

R. Jasana1 and T. Moraschini2

1 University of Barcelona, Barcelona, Spain
jansana@ub.edu

2 Czech Academy of Sciences, Prague, Czech Republic
moraschini@cs.cas.cz

Abstract

In this talk we sketch an abstract approach to two-sorted relational semantics based on
polarities, whose main advantage is that it applies to arbitrary logics and classes of ordered
algebras.

Relational semantics has proved to be a fundamental tool in the investigations of non-classical
logics and ordered algebras. Very roughly speaking, logicians may find relational semantics
appealing because it allows a freedom of construction (i.e. the possibility of deforming models,
adding points to them etc.), which is not immediately available in semantics with a more
algebraic flavour. On the other hand, algebraists may encounter relational semantics on their
way in the form of the skeleton underlying the theory of completions of ordered algebras
(including Dedekind-MacNeille completions and canonical extensions) and of Priestley-style
dualities. Finally, philosophers may find relational semantics valuable because of its natural
interpretation in terms of possible worlds (or states of knowledge, bodies of information etc.),
and its relevance in the foundation of constructive mathematics.

After Jónsson and Tarski’s seminal representation of Boolean algebras with operators and the
subsequent discovery of Beth and Kripke semantics for modal and intuitionistic logics, the theory
of relational semantics developed in two parallel directions. On the one hand, Bimbó, Dunn
and Hardegree among others developed gaggle theory as an attempt to provide a general path
towards relational semantics for non-classical logics [1, 2, 3, 4, 5]. On the other hand, Gehrke,
Harding, Jónsson and others introduced canonical extensions to provide an algebraic formulation
of topological dualities and a systematic method to produce well-behaved completions of ordered
algebras [8, 9, 6, 10].

Remarkably, the theories of gaggles and canonical extensions can be unified under the
formalism of completions arising from some special two-sorted relational structures called
polarities [7]. More precisely, a polarity is a triple 〈W,J,R〉 where W and J are non-empty sets
and R ⊆W × J . The connection between polarities and completions arises from the observation
that every polarity 〈W,J,R〉 induces a complete lattice. To explain why, consider the Galois
connection (·)� : P(W )←→ P(J) : (·)� defined for every A ⊆W and B ⊆ J as

A� := {j ∈ J : A× {j} ⊆ R} and B� := {w ∈W : {w} ×B ⊆ R}.

From the general theory of Galois connections, it follows that the map (·)�� is a closure operator
on W . We denote by G(W,J,R) the complete lattice of closed sets of (·)�� induced by the
polarity 〈W,J,R〉. Moreover, we denote by 6W and 6J the preorders on W and J respectively
defined by the following conditions:

w 6W u⇐⇒ u�� ⊆ w�� and j 6J i⇐⇒ j� ⊆ i�.

6



Relational semantics, ordered algebras, and quantifiers for deductive systems R. Jansana and T. Moraschini

In this talk we sketch a first abstract approach to two-sorted relational semantics based on
polarities, whose main advantage is that it applies to arbitrary logics and classes of ordered
algebras (regardless of the presence of a lattice reduct). The starting point of our discussion is a
basic question, which needs to be addressed by any truly general theory of relational semantics:

what does it mean that a logic has a relational semantics?

The fact that such a fundamental question has been somehow overlooked by the literature
should be attributed to the fact that in most cases our belief that some logics (such as modal
and intuitionistic ones) have a relational semantics is largely motivated on empiric observations
rather than on conceptual clarification. Whatever the answer to the above question may be, it
is clear that, in order to determine whether a logic has a relational semantics, we should first
clarify what is a relational structure in general.

General frames and ordered algebras

An ordered language is an algebraic language L , equipped with an assignment to every basic
operation symbol f ∈ L of a choice of which arguments of f will be treated as increasing and
which ones as decreasing. In this case, given f ∈ L , we write

f = f(~x; ~y) = f(x1, . . . , xm; y1, . . . , yn)

to denote the fact that the variables ~x will be treated as increasing and the variables ~y as
decreasing.

Given an ordered language L , an L -algebra is a pair 〈A,6〉 where A is an algebra and
〈A,6〉 is a poset such that fA(~x; ~y) is increasing on ~x and decreasing on ~y with respect to 6,
for every f(~x; ~y) ∈ L . For instance, when ordered under the lattice order, Heyting algebras,
modal algebras, and residuated lattices are L -algebras for natural ordered languages L .

Dealing with relational semantics it is convenient to think of all basic operations as general-
izations of one of the two basic modal operations � and 3. Accordingly, we say that a labeling
map for an ordered language L is a function β : L → {3,�}. A labeled ordered language L is
an ordered language L equipped with a labeling map β.

Given a labeled ordered language L , an L -frame is a structure

F = 〈W,J,R, {Tf : f ∈ L }〉

where 〈W,J,R〉 is a polarity s.t. 6W and 6J are partial orders, and for every operation symbol
f ∈ L s.t. f = f(x1, . . . , xm; y1, . . . , yn) and β(f) = 3, we have that Tf ⊆Wm × Jn ×W and

1. For all ~w1, ~w2 ∈Wm, ~j1,~j2 ∈ Jn, and u1, u2 ∈W s.t. ~w2 6W ~w1, ~j2 6J
~j1 and u1 6W u2,

if 〈~w1,~j1, u1〉 ∈ Tf , then 〈~w2,~j2, u2〉 ∈ Tf .

2. {u ∈W : 〈~w,~j, u〉 ∈ Tf} is a closed set of (·)�� for all ~w ∈Wm and ~j ∈ Jn.

If β(f) = �, a dual requirement is asked. We refer to W and J as to the sets of worlds and
co-worlds of F .

As in the case of modal and intuitionistic logics, every L -frame F can be associated with a
complete L -algebra F+ whose universe consists in a collection of distinguished sets of worlds,
namely G(W,J,R). Accordingly, an L -general frame is a pair 〈F , A〉 where F is an L -frame
and A is the universe of a substructure of F+. The complex algebra 〈F , A〉+ of 〈F , A〉 is the
substructure of F+ with universe A, which is of course an L -algebra.

2
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Local consequences

A valuation in a general frame 〈F , A〉 is a map v : V ar → A, where V ar is fixed countable
set of variables. It is possible to define a notion of satisfaction at a world w and a notion of
co-satisfaction at a co-world j of a formula ϕ (in variables V ar) under a valuation v, in symbols
w, v 
 ϕ and j, v � ϕ. This allows to associate two consequence relations to every class Fr of
L -general frames:

1. The local consequence of Fr, in symbols `lFr, is defined as follows:

Γ `lFr ϕ⇐⇒ for all 〈F , A〉 ∈ Fr, valuation v in 〈F , A〉, and w ∈W,
if w, v 
 Γ , then w, v 
 ϕ.

2. The co-local consequence of Fr, in symbols `clFr, is defined as follows:

Γ `clFr ϕ⇐⇒ for all 〈F , A〉 ∈ Fr, valuation v in 〈F , A〉, and j ∈ J,
if j, v � Γ , then j, v � ϕ.

Motivated by the above observation, we say that a logic ` is an L -local consequence if it is
the local consequence of some class of L -general frames. A closer look at the theory of L -local
consequences shows that each of them can be associated with a distinguished class of L -algebras
and of L -general frames, which are related by a sort of weak duality (one half of which is given
by the complex-algebra construction). As a matter of fact, this approach encompasses that
of canonical extensions of arbitrary lattices, but diverges from it when applied to non-lattice
based logics. This is due to the fact that our approach produces logic-based completions, i.e.
completions which reflect to some extent the behaviour of the logic under consideration. This
makes it especially fruitful in the study of purely intensional fragments of substructural logics
(which are not lattice-based).

If time allows, we will discuss the fact that any local consequences can be semantically
expanded to the first-order level with identity, universal and existential quantifiers. Remarkably,
this expansion is almost always conservative with respect to the original propositional logic, and
can be axiomatized by means of a transparent sequent calculus. Moreover, this construction
yields a sound and complete semantics for all (local consequences of) modal and superintuitinistic
first-order logics.

References

[1] K. Bimbó and J. Michael Dunn. Generalized Galois logics, volume 188 of CSLI Lecture Notes.
CSLI Publications, Stanford, CA, 2008. Relational semantics of nonclassical logical calculi.

[2] J. M. Dunn. Gaggle theory: an abstraction of Galois connections and residuation, with applications
to negation, implication, and various logical operators. In J. van Eijck, editor, Logics in AI
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Abstract

We extend first-order Order Gödel Logics by propositional quantifiers.

1 Introduction

First order Gödel logics form a well established class of many-valued logics with good proof-
theoretic properties and extensive theory [4].

Quantified Propositional Gödel Logics have been studied only a few times, and not much
is known about these logics besides a few results for specific logics [1–3, 6]. Propositional
quantifiers allow for quantification of propositions, which in the setting of Gödel logics boils
down to quantification over all truth values of the underlying truth-value set. Thus, they are
somewhere between first order and second order quantifiers.

It has already been shown that there are uncountably many quantified propositional Gödel
logics (without first order quantifiers), which is in stark contrast to the fact that there are only
countably many first order Gödel logics [7].

For three cases, namely V∞ = [0, 1], V↓ = {0} ∪ {1/n : n > 0}, and V↑ = {1} ∪ {1 − 1/n :
n > 0}, quantifier elimination has been shown for the propositional quantified Gödel logics, in
later two cases by extension of the language with an additional operator [1, 3].

In this paper we initiate the research program to study the combination of propositional
and first-order quantifieres with respect to Gödel logics.

1.1 Syntax and semantics for Gödel logics

For the following let us fix a countably infinite set P of propositional variables, usually written
as p, q, . . . , and a countable first-order language L which also contains P.

The definition of formulas in the Gödel logics with propositional quantifiers is as with
standard first-order Gödel logics (see [4]) with the additional clause that propositional variables
from P also count as atomic formulae, and that we allow quantification over propositional
variables: ∀pqA(q) and ∃pqA(q).

The semantics of first-order Gödel logics with propositional quantifiers, with respect to a
fixed Gödel set as truth value set and L is defined using the extended language L M,V , where
M is a universe of objects. L M,V is L extended with symbols for every element of M as
constants, so called M -symbols, as well as constants r for each r ∈ V , the underlying truth
value set. These symbols are denoted with the same letters.

Definition 1 (Semantics of Gödel logics with propositional quantifiers). Fix a Gödel set V . A
valuation v into V consists of (1) a nonempty set M = Mv, the ‘universe’ of v, and (2) for each
k-ary predicate symbol P , a function P v : Mk → V .
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Given a valuation v, we can naturally define a value v(A) for any closed formula A of
L M . For atomic formulas A = P (m1, . . . ,mn), we define v(A) = P v(m1, . . . ,mn). For atomic
formulas A = r, we define v(A) = r. For composite formulas A we define v(A) naturally by:
v(⊥) = 0, v(A ∧ B) = min{v(A), v(B)}, v(A ∨ B) = max{v(A), v(B)}, v(A → B) = v(B) if
v(A) > v(B), otherwise = 1, and the quantifier rules

v(∀xA(x)) = inf{v(A(m)) : m ∈M} v(∃xA(x)) = sup{v(A(m)) : m ∈M}
v(∀pqA(q)) = inf{v(A(r)) : r ∈ V } v(∃pqA(q)) = sup{v(A(r)) : r ∈ V }

(Here we use the fact that our Gödel sets V are closed subsets of [0, 1], in order to be able to
interpret ∀ and ∃ as inf and sup in V.)

For any closed formula A ∈ L and any Gödel set V we let

‖A‖V := inf{v(A) : v a valuation into V }

Definition 2 (Gödel logic with propositional quantifiers based on V ). Let V be a Gödel set.

The first order Gödel logic with propositional quantifiers Gfoqp
V , as the set of all closed formulas

of L , such that ‖A‖V = 1. The set Gfoqp
V is also written as VALfoqp

V .

In the following we will refer to Gfoqp
[0,1] simply as Gfoqp

2 Properties of Gfoqp and
⋂
V Gfoqp

V

Lemma 3. Both directions of the density axiom

∀pp((A→ p) ∨ (p→ B))↔ (A→ B)

hold in Gfoqp.

Proof. First assume that v(A) ≤ v(B), then the valuation of the right side is = 1, and what-
ever v(p) is evaluated to, it is either ≥ v(A) or ≤ v(B), and thus the valuation of the left side
is also = 1.

In the case that v(A) > v(B), the valuation of the right side is = v(B). We compute
the value of (A → p ∨ p → B) by looking at the possible valuation of p: (i) v(p) ≤ v(B):
the valuation is = 1; (ii) v(p) ≥ v(A): the valuation is again = 1; (iii) v(B) < p < v(A): the
valuation is = v(p). Since we are working in Gfoqp, there are real numbers strictly between v(B)
and v(A). Thus, we obtain v(∀pp(A → p ∨ p → B)) = infv(B)<p<v(A) v(p) = v(B), which
concludes the proof.

Theorem 4. There is no Gödel set V such that Gfoqp
V =

⋂
W Gfoqp

W .

Proof. If 0 is isolated in V , then ∃u∀w(¬¬u ∧ (¬w ∨ u → w)) is valid in Gfoqp
V . If 0 is not

isolated in V , then ¬∀w¬¬w is valid in Gfoqp
V . But none of the two is valid in

⋂
W Gfoqp

W .

Corollary 5. Gfoqp 6= ⋂
W Gfoqp

W

Theorem 6. Every formula in Gfoqp has an equivalent prenex normal form.

2
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First Order Gödel Logics with propositional quantifiers Baaz, Matthias and Preining, Norbert

Proof. The two propositional and first order quantifier shifts that are not generally valid in
Gödel logics are

(∀xA(x)→ B)→ ∃x(A(x)→ B) (i)

(B → ∃xA(x))→ ∃x(B → A(x)) (ii)

(∀ppA(p)→ B)→ ∃pp(A(p)→ B) (iii)

(B → ∃ppA(p))→ ∃pp(B → A(p)) (iv)

(see [4], Section 3.2). Let us first look at (i): We show that

(∀xA(x)→ B)→ ∃x((A(x)→ p) ∨ (p→ B)) (*)

holds in Gfoqp: If v(∀xA(x)) > v(B), the valuation of the left side = v(B). On the other hand
it is obvious that the valuation of the right side is always ≥ v(B), and as a consequence the
valuation of (*) is = 1.

If v(∀xA(x)) ≤ v(B), the valuation of the left side = 1, and we need to show that the
valuation of the right side is also = 1. We compute the value of the right side for all possible
valuations of p:

(a) v(p) ≤ v(B): In this case the existential quantifier over x is irrelevant since the second
part of the disjunction p → B always evaluates to = 1, and consequently also the whole right
side evaluates to = 1.

(b) v(B) < v(p): Since we also have that v(∀xA(x)) ≤ v(B), we have v(∀xA(x)) ≤ v(B) <
v(p). That means that for some c of the object universe, v(A(c)) < v(p), and thus v((A(c) →
p) ∨ (p→ B)) = 1. We obtain that also the valuation of the right side = 1.

Having shown that (*) holds for all p, we obtain that the following implication also holds:

(∀xA(x)→ B)→ ∀pp∃x((A(x)→ p) ∨ (p→ B))

which provides the necessary quantifier shift for the case (i).
The case of (ii)-(iv) can be treated in a similar way.

Theorem 7. Every formula in Gfoqp without quantified propositional quantifiers has a normal
form of the following form

∃p~p ∃~x ∀~yA′(~p, ~x, ~y).

Proof. Write A in structural normal form. This structural normal for can be written as

∧
∀x̄iAi(x̄i) ∧

∧
∀ȳj(Bj(ȳj)→ ∃paB′

j(a, ȳj)) ∧
∧
∀z̄k(∀pbC ′

k(b, z̄k)→ Ck(z̄k))→ F

where Ai, Bj , B
′
j , Ck, C ′

k, and F are quantifier free. As in the proof of Theorem 6 replace
∀ȳj(Bj(ȳj)→ ∃paB′

j(a, ȳj)) by ∀ȳj∀p∃pa(Bj(ȳj)→ B(a, ȳj)), and ∀z̄k(∀pbC ′
k(b, z̄k)→ Ck(z̄k))

by ∀z̄k∀pp∃b(C ′
k(b, z̄k)→ Ck(z̄k)).

Note that ∀x̄A(x) → B is valid in Gfoqp is equivalent to ∃x̄(A(x̄) → C ∨ C → B) valid in
Gfoqp, where C is a new propositional constant and (∃x̄A(x) → B) → ∀x̄(A(x̄) → B) is valid
in all Gödel logics.

Theorem 8. The intersection of all first order Gödel logics with quantifiers is not recursively
enumerable.

3
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First Order Gödel Logics with propositional quantifiers Baaz, Matthias and Preining, Norbert

Proof. We use the proof method introduced in [5] to show non-re of countable first-order Gödel
logics. By defining a exactly countable set of points the assumption of being re would lead to a
reduction of classical validity in all finite models to the validity of a formula in the given logic,
which by Trakhtenbrot’s Theorem is not recursively enumerable.

We refer the reader to [5] for details of the process, and only give the necessary definitions
for the exactly countable set: We first use a monadic predicate symbol P (x) to force a descent
to 0:

¬P (x) ∧ ∀x¬¬P (x).

Then we state that for each P (x) there is a surrounding of it that only contains the truth value
of P (x) itself:

∀x∃pp∃pq(p ≺ P (x) ≺ q ∧ ∀r(p ≺ r ≺ q → (P (x)↔ q))).

Note that these definitions can only be carried out using propositional quantifiers. By this,
we obtain at least countably many open intervals, which can be made non-overlapping by
symmetric differences (the p and q could coincide with some P (x), which would make half of
the intervals overlapping). Since one cannot embed more than countably many open intervals
into [0, 1], we obtain exactly countably many open intervals. By relativizing the quantifiers in
the original formula to the countably many points we obtain the necessary embedding.

We finish with the most important open problem, namely whether Gfoqp is recursively
enumerable. The obvious axiomatization would be the standard axiomatization of first order
Gödel logics together with the default axioms and rules for quantified propositional quantifiers.
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Titani rule. In Samuel Buss, Petr Hájek, and Pavel Pudlák, editors, Proceedings of the Logic
Colloquium ’98, Prague, LNL 13, pages 74–87. ASL, 2000.

[7] A. Beckmann, M. Goldstern, and N. Preining. Continuous Fräıssé conjecture. Order, 25(4):281–298,
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First-order logic is the best known example of a formal language whose model theory had
a great impact on 20th century mathematics (from non-standard analysis to abstract algebra).
The celebrated characterization of classical first-order logic obtained by Per Lindström in the
60s (published as [6]) is a landmark in contemporary logic. The introduction of a notion of
“extended first-order logic”, that encompassed a great number of expressive extensions of first-
order logic, allowed Lindström to establish, roughly, that there are no extensions of classical
first-order logic (in terms of expressive power) that would also satisfy the compactness and
Löwenheim–Skolem theorems (a nice accessible exposition can be found in [4]). Expressive
extensions of first-order logic are commonly called “abstract logics”.1

Lindström’s theorem single-handedly started a new area of research known as abstract or
soft model theory (cf. [1, 2]). The terminology comes from the fact that, when working in
this field, one uses “only very general properties of the logic, properties that carry over to
a large number of other logics” ([1], p. 225). Some common examples of such properties are
compactness, the Craig interpolation theorem or the Beth definability theorem. Abstract model
theory is concerned with the study of such properties and their mutual interaction.

In the framework of Mathematical Fuzzy Logic (MFL) the possibility of abstract model-
theoretic results was briefly considered by Petr Hájek’s in a technical report [5]. Indeed, he
showed that the analogues of Lindström theorem fails for some of the main first-order fuzzy
logics (BL∀,  L∀, Π∀, and G∀) with their standard semantics. Perhaps discouraged by this initial
negative result, the MFL community has not attempted again, to the best of our knowledge,
to build a corresponding abstract model theory. In this talk we would like to show that such a
theory could actually be a viable one, at least under certain technical conditions.

The algebraic framework is going to be that of MTL-algebras, that is, algebraic structures

of the form A = 〈A,∧A,∨A,&A,→A, 0
A
, 1

A〉 such that

• 〈A,∧A,∨A, 0A, 1A〉 is a bounded lattice,

• 〈A,&A, 1
A〉 is a commutative monoid,

• for each a, b, c ∈ A, we have:

a&A b ≤ c iff b ≤ a→A c, (residuation)

(a→A b) ∨A (b→A a) = 1
A

(prelinearity)

∗Guillermo Badia is supported by the project I 1923-N25 of the Austrian Science Fund (FWF).
†Carles Noguera is supported by the project GA17-04630S of the Czech Science Foundation (GAČR).
1In fact, probably the term “model-theoretic language” ([3]) is more accurate, depending on one’s views of

what a “logic” is.
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A is called an MTL-chain if its underlying lattice is linearly ordered. Henceforth, we will
be working with a fixed finite MTL-chain A.

Our propositional language will have a set of connectives L = {∧,∨,→,&} plus, for any

element a of A, we will have a constant a to denote it. When a = 1
A

or a = 0
A

, then a = 1 or
a = 0, respectively. A predicate language PA based on a signature τ (which contains relation,
function and constant symbols) will have again the basic set of connectives L∪{a | a ∈ A} plus
the quantifiers ∃,∀ and a crisp equality =.

We say that a sequence ā of objects from M in a model M = 〈A,M〉 satisfies a formula

ϕ(x̄) if ‖ϕ‖Mv[x̄→ā] = 1
A

(also written ‖ϕ[ā]‖M = 1
A

or as 〈A,M〉 |= ϕ[ā]). For a set of formulas

Φ, we write ‖Φ‖Mv = 1
A

if ‖ϕ‖Mv = 1
A

for every ϕ ∈ Φ. We say that 〈A,M〉 is a model of a

set of formulas Φ(x̄) if ‖ϕ[ā]‖M = 1
A

for each ϕ(x̄) ∈ Φ(x̄) and some sequence ā of elements
from M .

We will say that two formulas ϕ(x) and ψ(x) are 1-equivalent if for any model M and
element of the model e, M |= ϕ[e] iff M |= ψ[e].

An abstract logic will be any pair of the form L A = 〈LL , ‖‖L 〉 such that:

• LL maps every signature τ to a set of L (τ)-sentences LL (τ) such that:

– If τ ⊆ τ ′, then LL (τ) ⊆ LL (τ ′).

– (Occurrence). If ϕ ∈ LL (τ), then there is a finite τϕ ⊆ τ such that for every
signature τ ′, ϕ ∈ LL (τ ′) iff τϕ ⊆ τ ′.

– (Closure). Every LL (τ) contains τ as a subset and it is closed for the connectives
in L.

• ‖‖L is a function which maps every pair 〈ϕ, 〈M, e〉〉 to an element of A, where, for some
signature τ , ϕ ∈ LL (τ) and 〈M, w〉 is a pair of an (A, τ)-model and element of such
model. This function is assumed to respect the interpretation of the basic connectives in
L and the first-order quantifiers,

in addition to the following conditions:

– (Isomorphism). Whenever ϕ ∈ LL (τ), 〈M, w〉 and 〈N, v〉 are (A, τ)-models, and f
is an isomorphism between 〈M, w〉 and 〈N, v〉, then

‖ϕ‖〈N,v〉L = ‖ϕ‖〈M,w〉
L .

– (Expansion). If τ , τ ′ are two signatures such that τ ⊆ τ ′ and ϕ ∈ LL (τ), 〈M, w〉 is
an (A, τ ′)-model and M � τ is the reduct of M to τ , then

‖ϕ‖〈M,w〉
L = ‖ϕ‖〈M�τ,w〉

L .

We will write L A
1 E L A

2 to mean that for every formula of the first logic there is a 1-
equivalent formula in the second. If both L A

1 E L A
2 and L A

2 E L A
1 hold, then we say that

the abstract extensions L A
1 and L A

2 are expressively equivalent and write L A
1 ' L A

2 .
Note that L A

0 is obviously among its own abstract extensions, so that these extensions
extend L A

0 in the sense of the partial E-order.
We use L A

ωω to denote the abstract logic obtained from considering our first-order languages
with constants. The subindexes represent the finitary character of the quantifiers and the
connectives ∨,∧,&.

2
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By a crisp predicate we mean one taking only values in the set {0A, 1A}. In the presence of
our crisp equality, a function symbol f can be represented as a crisp binary predicate which is
functional.

We will show the proofs of the following main results:

Theorem 1. (First Lindström Theorem) Let L A be an abstract logic such that L A
ωω E L A.

If L A has the Löwenheim–Skolem property and the Compactness property for countable sets of
formulas, then L A E L A

ωω.

Lemma 2. (Separation Lemma) Let L A be an abstract logic with the finite occurrence property
such that L A

ωω ≤ L A. If L A has the Löwenheim–Skolem property and for some τ0 there are
disjoint classes Mod(ϕ),Mod(χ)(for ϕ, χ formulas in τ0 of L A ) such that there is no Mod(ψ)
(ψ a formula in τ0 of L A

ωω) separating Mod(ϕ) and Mod(χ), i.e.,

Mod(ϕ) ⊆ Mod(ψ) and Mod(χ) ∩Mod(ψ) = ∅.

Then for some signature δ containing at least a unary predicate U there is a formula θ in δ of
L A such that:

(i) M |= θ then UM is crisp and finite with cardinality > 1.

(ii) for every n > 1, we can find M |= θ and |{a ∈M |M |= U [a]}| = n.

Theorem 3. (Second Lindström Theorem) Let L A be an effective abstract logic (i.e., the
collection of its formulas is recursive) such that L A

ωω E L A. If L A has the Löwenheim–Skolem
property and the abstract Completeness property (the collection of its validities is recursively
enumerable), then L A E L A

ωω.
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1 Introduction

In recent decades, modal logics have been studied not just in the classical bivalent setting, but
also in non-classical settings including that of fuzzy logic (e.g., [4, §8.3], [3]). Here we make
an initial exploration of modalities over partial fuzzy logic, i.e., a variant of fuzzy logic that
admits truth-valueless propositions. A simple system of partial fuzzy logic, representing truth-
value gaps by an additional truth value added to the algebra of degrees, was proposed recently
in [2, 1]. We employ its apparatus to define the semantics of Kripke-style fuzzy modalities that
admit truth-value gaps, and investigate their basic properties. While in general not only modal
propositions, but also the accessibility relation can be both partially defined and fuzzy, here
we focus on the simpler case where the accessibility relation is total and crisp. Partial fuzzy
modalities based on partial or fuzzy accessibility relations are left for future work.

2 Partial fuzzy logic

Partial fuzzy logic L∗ proposed in [2] represents truth-value gaps by an additional truth value ∗,
added to an algebra of truth degrees of an underlying 4-core [5] fuzzy logic L. The intended
(general, linear, standard) L∗-algebras are thus defined as expansions L∗ = L∪{∗} of (arbitrary,
linear, standard) L-algebras L, where ∗ /∈ L. The connectives of L are extended to L∗ in several
parallel ways, including the following prominent families of L∗-connectives:

• The Bochvar-style connectives cB for each connective c of L, which treat ∗ as the absorbing
element, are defined by the following truth functions on L∗, for each α, β ∈ L, any unary
connective uB, and any binary connective cB (and similarly for higher arities):

uB

α uα

∗ ∗

cB β ∗
α α c β ∗
∗ ∗ ∗

• The Sobociński-style connectives cS ∈ {∧S,∨S,&S}, which treat ∗ as the neutral element,
and the Sobociński-style implication →S associated with &S by the residuation identity
x→S (y →S z) = (x&S y)→S z, are defined as follows:

cS β ∗
α α c β α

∗ β ∗

→S β ∗
α α→ β ¬α
∗ β ∗

∗Supported by grant No. 16–19170S of GA ČR and project LQ1602 in the program NPU II of MŠMT ČR.
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• The Kleene-style connectives cK ∈ {∧K,∨K,&K,→K}, which preserve the neutral and
absorbing elements of the corresponding connectives of L and otherwise are evaluated
Bochvar-style, are defined as follows, for all α, β ∈ Lr {1}, γ, δ ∈ Lr {0}:

∧K 0 β ∗
0 0 0 0

α 0 α ∧ β ∗
∗ 0 ∗ ∗

∨K δ 1 ∗
γ γ ∨ δ 1 ∗
1 1 1 1

∗ ∗ 1 ∗

&K 0 β ∗
0 0 0 0

α 0 α& β ∗
∗ 0 ∗ ∗

→K δ 1 ∗
0 1 1 1

α α→ δ 1 ∗
∗ ∗ 1 ∗

• Moreover, several useful auxiliary connectives are available in L∗, including the following
unary ones (where α ∈ L):

! ? ↓ ↑
α 1 0 α α

∗ 0 1 0 1

Further families of L∗-definable connectives are left aside here. Of the listed connectives,
only a few need be primitive (e.g., {cB | c ∈ L} ∪ {∗, !,∧K}; see [2, Th. 2.4]).

Based on the intended algebraic semantics described above, the consequence relation of
the logic L∗ is defined in the standard manner, with the only designated truth value 1. The
logic L∗ turns out to be Rasiowa-implicative [6] (w.r.t. a definable non-standard implication)
and axiomatized by a modification of the axiomatic system for L. For more details on L∗ see [2].

The first-order variant L∀∗ of L∗, introduced in [1], is defined as usual in fuzzy [4, 5]
or Rasiowa-implicative [6] logics, with predicates evaluated in L∗-algebras. In particular, a
model for a predicate language L over an intended L∗-algebra L∗ is M =

(
DM, (PM)P∈L

)
,

where DM is a crisp non-empty domain and PM : (DM)n → L∗ for each n-ary P ∈ L. The
Tarski conditions for terms and atomic formulae are defined as in L∀, and for propositional
connectives by the truth tables above. Like the connectives of L∗, the quantifiers of L∀∗ also
come in several families:

• The Bochvar-style quantifiers ∃B,∀B yield ∗ whenever an instance is ∗-valued:

‖(∃Bx)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x 7→a] = ∗ for some a ∈ DM

sup
{
‖ϕ‖Me[x7→a]

∣∣ a ∈ DM
}

otherwise

‖(∀Bx)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x7→a] = ∗ for some a ∈ DM

inf
{
‖ϕ‖Me[x7→a]

∣∣ a ∈ DM
}

otherwise.

• The Sobociński-style quantifiers ∃S,∀S ignore the ∗-valued instances:

‖(∃Sx)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x7→a] = ∗ for all a ∈ DM

sup
{
‖ϕ‖Me[x7→a]

∣∣ ‖ϕ‖Me[x 7→a] 6= ∗
}

otherwise

‖(∀Sx)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x7→a] = ∗ for all a ∈ DM

inf
{
‖ϕ‖Me[x7→a]

∣∣ ‖ϕ‖Me[x7→a] 6= ∗
}

otherwise.

• The Kleene-style quantifiers ∃K,∀K analogous to ∨K,∧K can be defined as follows:

(∃Kx)ϕ ≡df (∃Bx)ϕ ∨K (∃Sx)ϕ, (∀Kx)ϕ ≡df (∀Bx)ϕ ∧K (∀Sx)ϕ.

2

21



Partial Fuzzy Modal Logic Běhounek and Dvořák

As usual (cf. [4, 5]), we say that a model is safe if all the requisite suprema and infima exist.
Validity in a safe model is defined as truth to degree 1 under all evaluations of object variables
in the model; tautologicity as validity in all safe models for the given language; and entailment
as validity in all safe models validating all premises. Since L∗ is Rasiowa-implicative and ∃S,∀B

turn out to be interpreted by the supremum and infimum w.r.t. its matrix order, the logic L∀∗
can be axiomatized by adding Rasiowa’s quantifier axioms [6] for ∃S,∀B to L∗. For more details
on L∀∗ see [1].

3 Partial fuzzy modalities

As seen in the previous section, partial fuzzy logic contains several families of connectives and
quantifiers that represent various modes of propagation for ∗. Because Kripke modalities can be
understood as monadic quantifiers over possible worlds restricted by the accessibility relation,
it is not surprising that similar situation occurs in partial fuzzy modal logic. In particular,
since the semantic definitions of 2,3 involve a quantifier (universal for 2 and existential for 3)
and a restricting connective (implication for 2 and conjunction for 3), partial fuzzy modalities
are generally indexed by two indices that specify the quantifier and the connective. For in-
stance, 2BK denotes the modality of necessity defined by means of the Bochvar-style universal
quantifier ∀B and Kleene-style implication →K.

Let L∗ be an intended L∗-algebra as in Section 2. A Kripke frame is a structure K = (W,R),
where W is a crisp non-empty set of possible worlds and R is a total and crisp accessibility
relation on W . A partial fuzzy Kripke model over K is a pair M = (K, e), where e is a mapping
assigning to each w ∈ W and each propositional variable p a truth value e(w, p) ∈ L∗. Thus,
the truth value of p can be undefined (i.e., equal to ∗) in some or all w ∈W .

Let a Kripke model M be fixed. The truth value ‖ϕ‖w of a formula ϕ in M at the world w
can be defined in the obvious way for all formulae of L∗. We aim at extending the propositional
language of L∗ by meaningful Kripke-style modalities in M. Due to space limitations, we shall
only discuss the modalities of necessity here.

As a first step, we can consider the nine modalities 2XY, with X,Y ∈ {B,S,K} referring
respectively to the Bochvar, Sobociński and Kleene quantifiers and implications, defined by the
following Tarski conditions:

‖2XY ϕ‖w = (∀X w
′)(Rww′ →Y ‖ϕ‖w′), (1)

where the quantifier ∀X ranges over W . However, three of these nine modalities collapse into
one; some of the others do not respect the accessibility relation; and at least one intuitively
appealing 2-like modality cannot be found among them, but requires a special definition. Below
we list the interesting (well-behaved) cases of 2XY:

• The modality 2BK can be regarded as the ‘Bochvar-style necessity’, with ∗ acting as the
absorbing element in accessible worlds, since ‖2BK ϕ‖w = ∗ iff ‖ϕ‖w′ = ∗ for any w′ ∈W
such that Rww′ = 1. (Observe that 2BB is not a suitable Bochvar-style necessity, as it is
affected by inaccessible worlds: ‖2BB ϕ‖w = ∗ iff ‖ϕ‖w′ = ∗ for any w′ ∈W .)

• The modality 2KK can be considered a ‘Kleene-style necessity’, yielding 0 if the infimum
of the defined (i.e., non-∗) values in accessible worlds is 0, and otherwise behaving as 2BK.

• The modality 2SU. Similarly, we would like to define the ‘Sobociński-style necessity’, i.e.,
the modality 2XY such that ‖2XY ϕ‖w = ∗ iff ‖ϕ‖w′ = ∗ for all w′ accessible from w,

3
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and otherwise ignoring ∗ (i.e., ‖2XY ϕ‖w = ‖2BK ↑ϕ‖w otherwise). However, none of the
modalities 2XY for X,Y ∈ {B,S,K} exhibits this behavior. To obtain a Sobociński-style
necessity, we need to use an implication →U such that 0 →U β = ∗ and 1→U β = β,
for any β ∈ L∗. By [2, Th. 2.4], many such implications are definable in L∗; with any of
them, the modality 2SU possesses the desired properties described above.

• The modality 2XS. With →S it is immaterial which of the three quantifiers is employed,
since R is total and so (Rww′ →S ‖ϕ‖w′) 6= ∗; consequently, the modalities 2XS coincide
for each X ∈ {B,K,S}. Since 1 →S ∗ = 0 in L∗, the modality 2XS behaves as the
‘Bochvar-external necessity’, treating ∗ as falsity on the accessible worlds: ‖2XS ϕ‖w = 0
if ‖ϕ‖w′ = ∗ for some w′ such that Rww′ = 1. It can be easily shown that ‖2XS ϕ‖w =
‖2BK ↓ϕ‖w 6= ∗. (Cf. the Bochvar-external universal quantifier of [1].)

Using the Tarski conditions (1) in partial fuzzy Kripke models, it is straightforward to
define the local and global consequence relations for the extension of partial fuzzy logic L∗ by
the aforementioned modalities. (Note that the semantic value assignment ‖·‖ can equivalently
be understood as a syntactic translation of the modal language into L∀∗; cf. [4, §8.3].) In the
talk we will discuss the partial fuzzy modalities in more detail; show their basic properties;
present examples of valid and invalid modal formulae and rules of partial fuzzy modal logic;
and discuss possible generalizations and applications of the apparatus.
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A lattice L is transferable if whenever there is a lattice embedding h : L→ Idl(K) of L into
the ideal lattice Idl(K) of a lattice K, then there is a lattice embedding h′ : L→ K. It is sharply
transferable if h′ can be chosen so that h′(x) ∈ h(y) iff x ≤ y. If we restrict K to belong to
some class of lattices K, we say L is transferable for K. The notion has a long history, beginning
with [8, 5], and remains a current area of research [11]. For a thorough account of the subject,
see [9], but as a quick account, among the primary results in the area are the following.

Theorem 1. (see [9, pp. 502–503],[11]) A finite lattice is transferable for the class of all lattices
iff it is projective, and in this case it is sharply transferable.

Theorem 2. (see [5, 10]) Every finite distributive lattice is sharply transferable for the class of
all distributive lattices.

Our purpose here is to introduce, and make the first steps towards, an analogous study of
MacNeille transferability.

For a lattice K, we use K for the MacNeille completion of K. We also consider lattices with
one or both bounds as part of their basic type. For τ ⊆ {∧,∨, 0, 1}, a τ -lattice is a lattice, or
lattice with one or both bounds, whose basic operations are of type τ . A τ -homomorphism is
a homomorphism with respect to this type, and a τ -embedding is a one-one τ -homomorphism.

Definition 3. Let τ ⊆ {∧,∨, 0, 1}, L be a τ -lattice, and K a class of τ -lattices. Then L is
τ -MacNeille transferable for K if for any τ -embedding h : L → K where K ∈ K, there is a
τ -embedding h′ : L → K. We say L is sharply τ -transferable for K if h′ can be chosen so that
h′(x) ≤ h(y) iff x ≤ y for all x, y ∈ L. We use the terms MacNeille transferable and sharply
MacNeille transferable when τ = {∧,∨}.

There are obvious examples of lattices L that are MacNeille transferable for the class of all
lattices. Any finite chain, and the 4-element Boolean lattice provide such examples. Infinite
chains can be problematic, as is seen by a simple cardinality argument for L the chain of real
numbers and K the chain of rational numbers. Such difficulties arise also with the traditional
study of transferability using ideal lattices. Therefore we here restrict our attention to the case
where L is finite.

Characterizations as in Theorems 1 and 2 are beyond our scope. But we do provide a
number of results, both positive and negative, that begin to frame the problem. Among easy
results are the following:

Theorem 4. Any lattice which is MacNeille transferable for a class of lattices containing all
distributive lattices is distributive.

Theorem 5. Every finite projective distributive lattice is MacNeille transferable for the class
of lattices whose MacNeille completions are distributive.

∗The results presented here can be found in the forthcoming paper [3].
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We obtain stronger positive results for bi-Heyting algebras, namely by showing that the
MacNeille completion of a bi-Heyting algebra of finite width is a bounded sublattice of its ideal
lattice we obtain:

Theorem 6. Every finite distributive lattice is MacNeille transferable for the class of bi-Heyting
algebras.

Among further results, we show that that there are finite non-projective distributive lattices
MacNeille transferable—but not sharply MacNeille transferable—for the class of distributive
lattices, and therefore that the converse of Theorem 5 fails. In fact, we provide an infinite
family of finite non-projective distributive lattices that are MacNeille transferable for the class
of Heyting algebras whose dual spaces have finite width.

As negative results we give an example of a finite distributive lattice that is not MacNeille
transferable for the class of lattices whose MacNeille completions are distributive, and in the
case where MacNeille transferability is extended to include the bounds, we show:

Theorem 7. If L is a non-trivial finite distributive lattice with a non-trivial complemented
element then L is not {∧,∨, 0, 1}-MacNeille transferable for the class of Heyting algebras.

Finally, we note that for any finite lattice L and any τ ⊆ {∧,∨, 0, 1} there is a universal
clause, i.e., Π1-sentence, ρτ (L), in the language τ , expressing the property of not having a
τ -subalgebra isomorphic to L. Consequently, determining if a finite lattice L is τ -MacNeille
transferable is equivalent to determining if the universal clause ρτ (L) is preserved under Mac-
Neille completions. From this perspective some of our results are interderivable with special
cases of results obtained by Ciabattoni et al. [4].

Universal classes of Heyting algebras axiomatised by universal clauses of the form ρτ (L), for
τ = {∧,∨, 0, 1}, correspond to so-called stable intermediate logics [1, 2]. Our results provide an
infinite family of stable universal classes of Heyting algebras that are closed under MacNeille
completions. Due to the result of [7], this implies that these stable universal classes are also
closed under canonical extensions and therefore by [6] that the corresponding intermediate
logics are canonical.
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Abstract

We generalize the notion of monadic MV-algebras to that of Epistemic MV-algebras. As
monadic MV-algebras serve as algebraic models of modal logic S5( L), we propose epistemic
MV-algebras as algebraic models of modal system KD45( L). The main contributions of
this presentation are two: 1) we offer a characterization of epistemic MV-algebras as pairs
of MV-algebras (A,B) where B is a special case of a relatively complete subalgebra of
A called c-relatively complete. We also give a necessary and sufficient condition for a
subalgebra to be c-relatively complete; 2) we study the complex MV-algebras over MV-
chains and we determinate its connection with a simplified version of Kripke semantics.
Furthermore, we analyse the relation between complex MV-chains and the modal logic
given by an MV-chain studied by Bou et al. in [2].

1 Introduction

MV-algebras are the equivalent algebraic semantics of infinite-valued  Lukasiewicz logic
(see [4]). It is widely known that they coincide with involutive BL-algebras (see [6]). In
other words, the variety of MV-algebras is term-equivalent to the subvariety of BL that
satisfies ¬¬a = a. In the last decade, under different forms and contexts, modal extensions of
 Lukasiewicz logic have appeared in the literature for different reasoning modelling purposes.
For instance, in [7], the authors present an algebraic approach to some  Lukasiewicz modal
logics and its relationship with a crisp-relational semantics, i.e. where the accessibility relation
only takes two values. Another example appears in [2], where it was shown that the n-valued
 Lukasiewicz modal logic is axiomatizable. In [5], the authors partially extend these results
when replacing the underlying logic  Ln by the infinite-valued  Lukasiewicz modal logic (with
rational truth constants in the language). In fact, they prove that the tautologies of the
infinite-valued  Lukasiewicz modal logic are characterized as the intersection of the tautologies
of every n-valued  Lukasiewicz modal logic with n ∈ N. Unfortunately, it is not immediate to
find in this way an axiomatization of the infinite-valued  Lukasiewicz modal logic.

Finally, it is worth mentioning the infinite-valued  Lukasiewicz modal logics studied by Hájek
in Chapter 8 of [6]. In particular, the fuzzy variants S5( L) and KD45( L) of the well-known clas-
sical modal logics S5 and KD45, respectively, are studied. In fact, the first logic is axiomatized
but the axiomatization of the second one is left as an open problem.

We want to attack this open problem in a novel way, by proposing a possible algebraic
semantics, which is obtained by extending MV-algebras (the algebraic models of  Lukasiewicz

27



Epistemic MV-algebras Busaniche, Cordero, Rodriguez

logic) by an operator that models possibility 1. To achieve our aim, we introduce a generalization
of Monadic MV-algebras defined and studied by Rutledge in his Ph.D thesis ([8]) which we
call Epistemic MV-algebras (EMV-algebras). This generalization resembles what is done with
monadic Boolean algebras and Pseudomonadic algebras in [1].

Throughout this presentation, we assume that the reader is acquainted with basic notions
concerning MV-algebras. For details about MV-algebras see [4].

2 Epistemic MV-algebras

Definition 1. An algebra A = 〈A,⊕,¬,∃, 0〉 of type (2, 1, 1, 0) is called an Epistemic
MV-algebra (an EMV-algebra for short) if 〈A,⊕,¬, 0〉 is a MV-algebra that also satisfies:

(EMV∃) ∃0 = 0
(EMV1) ∃¬a⊕ ∃a = 1
(EMV2) ¬∃(a� ¬∃b) = ∃a→∃b

(EMV3) ∃a� ∃¬∃a = 0
(EMV4) ∃(a ∨ b) = ∃a ∨ ∃b
(EMV5) ∃(a� ∃b) = ∃a� ∃b

where the operations �, →, ∨, and ∧ are defined as follows: a� b := ¬(¬a⊕¬b), a→ b :=
¬a⊕ b, a ∨ b := ¬(¬x⊕ b)⊕ b and a ∧ b := a� (a→ b).

Epistemic MV-algebras form a variety that we will denote by EMV, and for simplicity, if A
is a MV-algebra and we enrich it with an epistemic structure, we denote the resulting algebra
by 〈A,∃〉. In an EMV-algebra, we can define ∀ : A 7→ A by ∀a = ¬∃¬a.

We recall that A = 〈A,�,→, 0〉 is a BL-algebra which satisfies the equation (a→ 0)→ 0 =
a. On the other hand, if we take a BL-algebra B = 〈B,�,→, 0〉 satisfying the equation
(a→ 0)→ 0 = a and for each a, b ∈ B we define ¬a = a→ 0 and a ⊕ b = ¬(¬a � ¬b), then
B = 〈B,⊕,¬, 0〉 is an MV-algebra.

In [3], the following definition of Epistemic BL-algebras is proposed:

Definition 2. An algebra A = 〈A,∨,∧,�,→,∀,∃, 0, 1〉 of type (2, 2, 2, 2, 1, 1, 0, 0) is called an
Epistemic BL-algebra (an EBL-algebra for short) if 〈A,∨,∧,�,→, 0, 1〉 is a BL-algebra that
also satisfies:

(E∀) ∀1 = 1,
(E∃) ∃0 = 0,
(E1) ∀a→∃a = 1,
(E2) ∀(a→∀b) = ∃a→∀b,
(E3) ∀(∀a→ b) = ∀a→∀b,

(E4) ∃a→∀∃a = 1,
(E4a) ∀(a ∧ b) = ∀a ∧ ∀b,
(E4b) ∃(a ∨ b) = ∃a ∨ ∃b,
(E5) ∃(a� ∃b) = ∃a� ∃b.

Epistemic BL-algebras form a variety that we will denote by EBL. In our presentation, we
are going to show that the subvariety of EBL determined by the equation ¬¬a = a is term-
equivalent to the variety of EMV. Due to this fact, we can use some of the results of [3] to
study EMV. For instance, we prove the following:

Theorem 1. If A ∈ EMV, then ∃A is closed under the operations of A, thus ∃A is a subalgebra
of A.

1The necessity operator could be definable in this case because of the involution.
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Given an EMV-algebra 〈A,∃〉, if the set

{a ∈ A : ∀a = 1} ( A

has a least element c, then c will be called focal element of A. This focal element satisfies:

c = min
a∈A
{(a→∃a)}

According to that, we are going to say that an EMV-algebra A, is a c-EMV-algebra, if the
focal element c exists in A. It is worth pointing out that this focal element plays an important
role, since it allows us to recover the unary operator ∃, as the following theorem shows

Theorem 2. Let A be a c-EMV-algebra and let B be the subalgebra given by Theorem 1, then

∃a = min{b ∈ B : c� a ≤ b}

Moreover, we are going to show under which conditions an c-EMV-algebra can be defined
from a MV-algebra A and one of its subalgebras B.

Definition 3. Let A be a MV-algebra, B a subalgebra of A and c ∈ A. We say that the pair
(B, c) is a c-relatively complete subalgebra, if the following conditions hold:

(e1) For every a ∈ A, the subset {b ∈ B : c� a ≤ b} has a least element.

(e2) {a ∈ A : c2 ≤ a} ∩B = {1}.

Theorem 3. Given a MV-algebra A and a c-relatively complete subalgebra (B, c), if we define
on A the operations:

∃a := min{b ∈ B : c� a ≤ b}, (1)

then 〈A,∃〉 is a c-EMV-algebra such that ∃A = B. Conversely, if A is a c-EMV-algebra, then
(∃A, c) is a c-relatively complete subalgebra of A.

Last theorem shows that there exists a one-to-one correspondence between c-EMV-algebras
and the pairs (A,B) where (B, c) is a c-relatively complete subalgebra of A.

To finish our presentation, we will try to explain the relation between this algebraic semantics
and the well known Kripke semantics. Our goal will then be to establish a connection between
EMV-algebras and the modal logic given by a finite MV-chain studied by [2].
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In modal extensions of classical logic, Kripke frames and Scott–Montague neighborhood
frames (see e.g. [21, 26]) provide two, widely used, different kinds of frame semantics; the
former is intended for normal modal logics (i.e. extensions of K), while the latter works as well
for non-normal modal logics extending the weaker system E. However, not all logics extending
these basic logics are complete with respect to a class of corresponding frames.

This problem has been amended by enhancing frames with collections of admissible sets of
worlds (i.e., prescribed sets that are allowed to be assigned to a formula by a valuation). Such
generalized semantics has proved to be more versatile as it guarantees completeness theorems
for all modal logics over K or E respectively [9].

Many-valued propositional logics expanded with modal operators have been a topic of in-
terest since Fitting’s initial works [13,14], later continued by Petr Hájek and others in the field
of Mathematical Fuzzy Logic (see e.g. [3–8, 10, 16–20, 27, 28]). Such modal logics are typically
endowed with a many-valued Kripke semantics, i.e., a semantics over a given algebra (usually a
residuated lattice) whose elements are used as possible values of formulas in each world and/or
degrees of accessibility from one world to another.1 As in the classical case, Kripke-style se-
mantics has its limitations; but the situation here is even more complicated: indeed, to find the
axiomatization of the class of all frames often becomes difficult.

An alternative frame semantics, with wider applicability and better logical properties, can
be proposed. Following earlier works of Godo and Rodŕıguez [23, 24], in this talk we present
the first steps towards a general theory of Scott–Montague semantics for many-valued logics.

We introduce (general) Scott–Montague frames over an arbitrary FLew-algebra A with oper-
ators. We discuss its relations with the (general) Kripke semantics and prove several complete-
ness results for the global consequence relation over these frames, in particular for all extensions
of the logic E over the logic of A, provided that the logic of A is finitary (these results can be
seen in full details in the recent papers [11,12]).

∗This work is supported by the mobility CONICET-CAS project 16-04 ‘First-order many-valued logics’.
Cintula and Noguera were also supported by the grant GA17-04630S of the Czech Science Foundation. Cintula
also acknowledges the support of RVO 67985807 and Menchón of CONICET under grant PIP 112-201501-00412.

1It should be mentioned that there is another tradition in the study of modal extensions of non-classical logics
which already have a certain ‘classical’ frame semantics (classical in the sense that both accessibility relations and
valuation functions are two-valued), typical examples being the intuitionistic, relevant and other substructural
logics. In this approach, modalities are modeled using additional classical accessibility relations/neigbourhood
functions (see e.g. [2, 15, 25] or the corresponding chapter of [22]). Even though there are certain relations
between both approaches stemming from algebra/frame dualities, the results of this stream of research are not
directly relevant to the framework presented here.
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1. General A-neighborhood frames and the completeness theorem

A general A-neighborhood frame, a gSM(A)-frame for short, is a tuple F = 〈W,N2, N3, S〉 such
that W 6= ∅, S is a subuniverse of AW , and N2, N3 : S → S are the neighborhood functions.

Furthermore, a general A-neighborhood model is a tuple M = 〈F, V 〉, where F =
〈W,N2, N3, S〉 is an gSM(A)-frame and V : Var → S is an admissible valuation. The val-
uation is extended to all formulas VM : Fm23

L → S, defining:

VM(2ϕ) = N2(VM(ϕ)),

VM(3ϕ) = N3(VM(ϕ)),

VM(◦(ϕ1, . . . , ϕn)) = ◦AW

(VM(ϕ1), VM(ϕ2), . . . , VM(ϕn)), for any n-ary ◦ ∈ L.

A general A-neighborhood frame is full if S = AW and, then, it can be identified with just
the tuple 〈W,N2, N3〉 which we call simply an ‘A-neighborhood frame’. By (g)SM(A) we also
denote the class all of (general) A-neighborhood frames.

We say that ϕ is a (global) consequence of Γ w.r.t. a class F of general A-neighborhood
frames, Γ |=g

F ϕ in symbols, if for each F ∈ F and each model M over F we have:

if VM(γ) = W for each γ ∈ Γ, then also VM(ϕ) = W.

Since we do not deal with local consequence here, we omit the prefix ‘global’ and its superindex.
Recall that the logic of an algebra A, denoted as |=A, need not be finitary. Therefore, we

define the logic EA as the expansion of the finitary companion2 of |=A by two additional rules:

ϕ↔ ψ ` 2ϕ↔ 2ψ and ϕ↔ ψ ` 3ϕ↔ 3ψ.

By gSM(L) we denote the class of all gSM(A)-frames F sound w.r.t. L, i.e., such that for each
Γ ∪ {ϕ} we have Γ |=F ϕ whenever Γ `L ϕ. Note that we can easily prove that gSM(EA) =
gSM(A).

Theorem 1. Let A be an FLew-algebra with operators such that |=A is finitary and let L be
an extension of EA. Then, for each Γ ∪ {ϕ} ⊆ Fm23

L , we have:

Γ `L ϕ iff Γ |=gSM(L) ϕ.

In the particular case of the basic logic EA we actually have completeness with respect to
all full SM(A)-frames, i.e., if |=A is finitary we have Γ `EA

ϕ iff Γ |=SM(A) ϕ. Also, in this case,
if we restrict to finite sets Γ the equivalence holds even without assuming that |=A is finitary.

2. Relation with Kripke semantics

A general A-Kripke frame, a gKR(A)-frame for short, is a tuple F = 〈W,R, S〉 such that
W 6= ∅, R is a binary A-valued relation, and S is a subuniverse of AW closed under functions
R2, R3 : AW → AW defined for each X ∈ AW as3

R2(X) = {w | R[w] ⊆ X} = {w | ∧
v∈W

(wRv →A v ∈ X)},
R3(X) = {w | R[w] G X} = {w | ∨

v∈W

(wRv &A v ∈ X)}.

2We define Γ `FC(A) ϕ iff there is a finite Γ′ ⊆ Γ such that Γ′ |=A ϕ.
3We view the elements of AW as A-valued fuzzy sets (e.g., we write w ∈ X instead of X(w)) and the

operations on the complex product AW as operations on fuzzy sets. Utilizing the formalism of Fuzzy Class
Theory [1], we use the comprehension terms to describe elements of AW , and the well-known graded subsethood
and overlap relations.
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Furthermore, a general A-Kripke model is a tuple M = 〈F, V 〉, where F = 〈W,R, S〉 is a
gKR(A)-frame and V : Var → S is an admissible valuation. The valuation is extended to all
formulas VM : Fm23

L → S, defining:

VM(2ϕ) = R2(VM(ϕ)),

VM(3ϕ) = R3(VM(ϕ)),

VM(◦(ϕ1, . . . , ϕn)) = ◦AW

(VM(ϕ1), VM(ϕ2), . . . , VM(ϕn)), for any n-ary ◦ ∈ L.

We say that a gSM(A)-frame F = 〈W,N2, N3, S〉 is equivalent to a gKR(A)-frame F′ =
〈W,R, S〉 if for each admissible valuation V and each formula ϕ we have V 〈F,V 〉(ϕ) = V 〈F′,V 〉(ϕ).

The relationship between full A-Kripke and full A-neighborhood frames mimics that of
classical logic (as before, we identify full general A-Kripke frames with simple A-Kripke frames).

An SM(A)-frame F = 〈W,N2, N3〉 is augmented if, for each w ∈ W , there is a unique
Cw ∈ AW such that for each X ∈ AW ,

Cw ⊆ X = w ∈ N2(X) and Cw G X = w ∈ N3(X).

Theorem 2. Let A be a complete FLew-algebra with operators.

(a) If F = 〈W,R〉 is a K(A)-frame, then Fn = 〈W,R2, R3〉 is an augmented SM(A)-frame
equivalent to F.

(b) If F = 〈W,N2, N3〉 is an augmented SM(A)-frame, then Fk = 〈W,RF〉, where RFwv =
v ∈ Cw is a K(A)-frame equivalent to F.

(c) For each K(A)-frame F, we have: F = (Fn)k.

(d) For each augmented SM(A)-frame F, we have: F = (Fk)n.

Note one fundamental difference between general Kripke and neighborhood frames: for each
gKR(A)-frame F = 〈W,R, S〉, the reduct 〈W,R〉 is an A-Kripke frame. In neighborhood frames
the same trick does not work as the functions used to interpret the modalities are defined only
for admissible A-valued sets and, thus, for each gSM(A)-frame F = 〈W,N2, N3, S〉 there could
be many different SM(A)-frames Ff = 〈W,N2

f , N
3
f 〉 such that N2

f |S = N2 and N3
f |S = N3.

We can overcome this problem by using suitable notions of augmented gSM(A)-frame and
tight gKR(A)-frame. We prove that to each gKR(A)-frame F we can assign an equivalent
augmented gSM(A)-frame Fgn . Dually, to each augmented gSM(A)-frame we assign an equiv-
alent tight gKR(A)-frame Fgk . Furthermore, for each augmented gSM(A)-frame F, we have:
F = (Fgk )gn ; and for each tight gKR(A)-frame F, we have: F = (Fgn)gk (without the tightness
assumption we would only obtain that F is equivalent to (Fgn)gk ).
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[17] Petr Hájek. On fuzzy modal logics S5. Fuzzy Sets and Systems, 161(18):2389–2396, 2010.

[18] Georges Hansoul and Bruno Teheux. Extending  Lukasiewicz logics with a modality: Algebraic
approach to relational semantics. Studia Logica, 101(3):505–545, 2013.

[19] Michel Marti and George Metcalfe. A Hennessy–Milner property for many-valued modal logics.
In Advances in Modal Logic, pages 407–420. College Publications, 2014.

[20] George Metcalfe and Nicola Olivetti. Towards a proof theory of Gödel modal logics. Logical
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Abstract

We give a description of all hereditarily structurally complete positive logics.

1 Introduction

The notion of admissible rule evolved from the notion of auxiliary rule: if a formula B can
be derived from a set of formulas A1, . . . , An in a given calculus (deductive system) DS, one
can shorten derivations by using a rule A1, . . . , An/B. The application of such a rule does not
extend the set of theorems, i.e. such a rule is admissible (permissible). In [9, p.19] P. Lorenzen
called the rules not extending the class of the theorems ”zulässig,” and the latter term was
translated as ”admissible,” the term we are using nowadays. In [10] Lorenzen also linked the
admissibility of a rule to existence of an elimination procedure.

Independently, P. S. Novikov, in his lectures on mathematical logic, had introduced the
notion of a derived rule: a rule A1, . . . ,An/B, where A1, . . . ,An,B are variable formulas of
some type, is derived in a calculus DS if `DS B holds every time when `DS A1, . . . ,`DS An hold
(see [13, p. 30]1). And he distinguished between two types of the derived rules: a derived rule
is strong, if `DS A1 → (A2 → . . . (An → B) . . . ) holds, otherwise a derived rule is weak.

For classical propositional calculus (CPC), the use of admissible rules is merely a mat-
ter of convenience, because every admissible in CPC rule A1, . . . , An/B is derivable, that is
A1, . . . , An `CPC B (see, for instance [1]). It was observed by R. Harrop in [8] that the rule
¬p → (q ∨ r)/(¬p → q) ∨ (¬p → r) is admissible in intuitionistic propositional logic (Int),
but is not derivable: the corresponding formula is not a theorem of Int. Later, in mid 1960s,
A. V. Kuznetsov observed that the rule (¬¬p→ p)→ (p ∨ ¬p)/((¬¬p→ p)→ ¬p) ∨ ((¬¬p→
p) → ¬¬p) is also admissible in Int, but not derivable. Another example of an admissible for
IPC not derivable rule was found in 1971 by G. Mints (see [11]): the following rule is admissible
but not derivable in Int

(p→ q)→ (p ∨ r)/((p→ q)→ p) ∨ ((p→ q)→ r). (1)

Naturally, the question about admissibility of rules in the intermediate logics (the extensions
of Int understood as a set of theorems) and their fragments arose. And in [16] T. Prucnal proved
that →-fragment of any intermediate logic, is structurally complete, i.e. these fragments do
not have admissible not-derivable rules. If a logic and all its extensions are structurally complete,
such a logic is hereditarily structurally complete (HSCpl ).

In terms of hereditary structural completeness, the aforementioned Prucnal’s result can be
rephrased as follows: the →-fragment of Int is hereditarily structurally complete. Curiously
enough, the implication-negation (or implication-falsity) fragment of Int is not structurally
complete (see [18]). In [3], Cintula and Metcalfe described hereditarily structurally complete

1This book was published in 1977, but it is based on the notes of a course that P.S. Novikov taught in
1950s; A.V. Kuznetsov was recalling that P.S. Novikov had used the notion of derivable rule much earlier, in
this lectures in 1940s.
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implication-negation fragments of the intermediate logics, and they proved that there is the
smallest (hereditarily) structurally complete implication-negation fragment. The situation with
hereditary structural completeness of fragments intermediate logics is summarized in Table 1
where ”Not HSCpl” means that not all intermediate logics are HSCpl with respect to a particular
fragment.

Fragment Reference

{→} HSCpl [16]
{→,⊥} Not HSCpl (the smallest HSCpl fragment exists) [3]
{→,∧} HSCpl [12]
{→,∧,⊥} HSCpl [18]
{→,∧,∨} Not HSCpl (the smallest HSCpl fragment exists) this abstract
{→,∧,∨,⊥} Not HSCpl (the smallest HSCpl fragment exists) [4]

Table 1: Structural Completeness of Fragments of Intermediate Logics

An interesting sufficient condition for positive predicate logic to be hereditarily structurally
complete was proved by Dzik (cf. [5, Theorem 3]).

Let us make an easy but nonetheless curious observation: the positive fragment of the
Medvedev Logic ML is not structurally complete, in particular, rule (1) is admissible but not
derivable in ML. This raises the following question.

Problem 1. Is every structurally complete positive logic hereditarily structurally complete?

2 Main Results

We consider intuitionistic propositional logic Int with connectives ∧,∨,→,⊥,>. The (proposi-
tional) formulas which have no occurrences of ⊥ are called positive. Clearly, the set Int+ of
all positive formulas from Int is closed under the application of rules modus ponens (denoted
by MP) and (simultaneous) substitution (denoted by Sb). The set of all extensions of Int+,
closed under MP and Sb is denoted by ExtInt+, and we refer to members of ExtInt+ as positive
logics.

Algebraic models for positive logics are Brouwerian algebras2: an algebra 〈A;∧,∨,→, 1〉,
where 〈A;∧,∨, 1〉 is a distributive lattice with a greatest element 1, and→ is a relative pseudo-
complementation, is a Brouwerian algebra.

In a regular way we define validness of a formula in a given algebra: a formula A is valid
in a given (Brouwerian) algebra A (in symbols, A |= A) if v(A) = 1 for every valuation v in
A. With each logic L ∈ ExtInt+ we associate a set V(L) of all algebras in which every formula
from L is valid:

V(L) := {A | A |= A, for every A ∈ L}.
The class V(L) forms a variety.

On the other hand, every variety V of Brouwerian algebras defines a positive logic:

L(V) := {A | A |= A for every A ∈ V}.

2We follow [6] and call these algebras Brouwerian. Some authors are using different names, for instance,
implicative lattices [14], lattice with pseudocomplementation [17].
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Theorem 2.1 (Main Theorem). A positive logic L is hereditarily structurally complete if and
only if Brouwerian algebras S1 and S2 depicted in Fig. 1. are not models for L.

It is known (see e.g. [15]) that logic L is HSCpl if and only if variety V(L) is primitive,
that is every subquasivariety of V(L) is a variety. Thus, the above theorem is equivalent to the
following statement.

Theorem 2.2 (Main Theorem: Algebraic Version). A variety V of Brouwerian algebras is
primitive if and only if S1,S2 /∈ V (see Fig. 1).

Figure 1: Non-
projective Brouwe-
rian Algebras.

A proof of the above theorem follows from the following lemmas.

Lemma 2.3. Any variety that contains algebra S1 or S2 is not primitive.

Recall that a variety V is said to be locally finite if any finitely
generated algebra from V is finite. The following lemma gives an easy
sufficient condition of local finiteness.

Lemma 2.4. Any variety of Brouwerian algebras not containing algebra
S1 is locally finite.

Recall also that an algebra A from a class of algebras K is weakly
projective (or primitive [2]) in K if A ∈ SB for every algebra B ∈ K
such that A ∈ HB.

Lemma 2.5. In any variety of Brouwerian algebras not containing alge-
bras S1,S2, every finite subdirectly irreducible algebra is weakly projective.

It is clear that Lemma 2.3 is just a necessary condition of hereditary structural completeness,
while the sufficient condition follows immediately from Lemmas 2.4, 2.5 and the following
Proposition (see [7, Proposition 5.1.24]).

Proposition 2.6. Let V be a locally finite variety of a finite signature. Then, V is primitive if
and only if every finite subdirectly irreducible algebra from V is weakly projective in the set of
all finite algebras from V.

Corollary 2.7 (Main Corollary). The following hold:

(a) There is the smallest HSCpl positive logic and it is finitely axiomatized;

(b) The set of all HSCpl positive logics is countable;

(c) Every HSCpl positive logic is finitely axiomatizable;

(d) There are infinitely many HSCpl intermediate logics whose positive fragment is not HSCpl
.

Note that (c) follows from (a), (b) and the following theorem that holds for any congruence
distributive variety of finite signature, and it is interesting in its own right.

Theorem 2.8. Let V be a locally finite finitely based congruence distributive variety of finite
signature. Then, every subvariety of V is finitely based if and only if V has at most countably
many subvarieties.
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1 Preliminaries and first results

In this talk we consider the logics Lin obtained from the (n+ 1)-valued  Lukasiewicz logics  Ln+1

by taking the order filter generated by i/n as the set of designated elements. The (n+1)-valued
 Lukasiewicz logic can be semantically defined as the matrix logic

 Ln+1 = 〈LVn+1, {1}〉,

where LVn+1 = (LVn+1,¬,→) with LVn+1 =
{

0, 1
n , . . . ,

n−1
n , 1

}
, and the operations are defined

as follows: for every x, y ∈ LVn+1, ¬x = 1− x and x→ y = min{1, 1− x+ y}.
Observe that  L2 is the usual presentation of classical propositional logic CPL as a matrix logic

over the two-element Boolean algebra B2 with domain {0, 1} and signature {¬,→}. The logics
 Ln can also be presented as Hilbert calculi that are axiomatic extensions of the infinite-valued
 Lukasiewicz logic  L∞.
The following operations can be defined in every algebra LVn+1: x ⊗ y = ¬(x → ¬y) =
max{0, x + y − 1} and x ⊕ y = ¬x → y = min{1, x + y}. For every n > 1, xn = x ⊗ · · · ⊗ x
(n-times) and nx = x⊕ · · · ⊕ x (n-times).

For 1 ≤ i ≤ n let Fi/n = {x ∈ LVn+1 : x ≥ i/n} =
{

i
n , . . . ,

n−1
n , 1

}
be the order filter

generated by i/n, and let
Lin = 〈LVn+1, Fi/n〉

be the corresponding matrix logic. From now on, the consequence relation of Lin is denoted by
|=Li

n
. Observe that  Ln+1 = Lnn for every n. In particular, CPL is L1

1 (that is,  L2). If 1 ≤ i,m ≤ n,

we can also consider the following matrix logic: L
i/n
m = 〈LVm+1, Fi/n ∩ LVm+1〉.

The logic L1
2 = 〈LV3, {1, 1/2}〉 was already known as the 3-valued paraconsistent logic J3,

introduced by da Costa and D’Ottaviano see [4] in order to obtain an example of a paraconsistent
logic maximal w.r.t. CPL.

Definition 1. Let L1 and L2 be two standard propositional logics defined over the same
signature Θ such that L1 is a proper sublogic of L2. Then, L1 is maximal w.r.t. L2 if, for every
formula ϕ over Θ, if `L2

ϕ but 6`L1
ϕ, then the logic L+

1 obtained from L1 by adding ϕ as a
theorem, coincides with L2.

In order to study maximality among finite-valued  Lukasiewicz logics defined by order filters
we obtain the following sufficient condition:
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Theorem 1. Let L1 = 〈A1, F1〉 and L2 = 〈A2, F2〉 be two distinct finite matrix logics over a
same signature Θ such that A2 is a subalgebra of A1 and F2 = F1 ∩A2. Assume the following:

1. A1 = {0, 1, a1, . . . , ak, ak+1, . . . , an} and A2 = {0, 1, a1, . . . , ak} are finite such that 0 6∈ F1,
1 ∈ F2 and {0, 1} is a subalgebra of A2.

2. There are formulas >(p) and ⊥(p) in L(Θ) depending at most on one variable p such that
e(>(p)) = 1 and e(⊥(p)) = 0, for every evaluation e for L1.

3. For every k + 1 ≤ i ≤ n and 1 ≤ j ≤ n (with i 6= j) there exists a formula αi
j(p) in L(Θ)

depending at most on one variable p such that, for every evaluation e, e(αi
j(p)) = aj if

e(p) = ai.

Then, L1 is maximal w.r.t. L2.

We use this result to prove that

Theorem 2. Let 1 ≤ i,m ≤ n. Then Lin is maximal w.r.t. L
i/n
m if the following condition holds:

there is some prime number p and k ≥ 1 such that n = pk, and m = pk−1.

Corollary 1. Let 1 ≤ i ≤ p. For every prime number p, Lip is maximal w.r.t. CPL

Notice that the above corollary generalizes the well known result:  Lp+1 is maximal w.r.t.
CPL for every prime number p.

Definition 2. Let L1 and L2 be two standard propositional logics defined over the same
signature Θ such that L1 is a proper sublogic of L2. Then, L1 is strongly maximal w.r.t. L2 if,
for every finitary rule ϕ1, . . . , ϕn/ψ over Θ, if ϕ1, . . . , ϕn `L2

ψ but ϕ1, . . . , ϕn 6`L1
ψ, then the

logic L∗1 obtained from L1 by adding ϕ1, . . . , ϕn/ψ as structural rule, coincides with L2.

Let i be a strictly positive integer, the i-explosion rule is the rule (expi)
i(ϕ ∧ ¬ϕ)

⊥ .

Lemma 1. For every 1 ≤ i ≤ n, the rule (expi) is not valid in Lin.

Corollary 2. Let 1 ≤ i ≤ p. For every prime number p, Lip is not strongly maximal w.r.t. CPL

2 Equivalent systems

Blok and Pigozzi introduce in [3] the notion of equivalent deductive systems in the following
sense: Two propositional deductive systems S1 and S2 in the same language L are equivalent
iff there are two translations τ1, τ2 (finite subsets of L-propositional formulas in one variable)
such that:

• Γ `S1 ϕ iff τ1(Γ) `S2 τ1(ϕ),

• ∆ `S2 ψ iff τ2(∆) `S1 τ2(ψ),

• ϕ a`S1
τ2(τ1(ϕ)),

• ψ a`S2
τ1(τ2(ψ)).

Theorem 3. For every n ≥ 2 and every 1 ≤ i ≤ n, Lin and Ln+1 are equivalent deductive
systems.

2
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From the equivalence among Lin and  Ln+1, we can obtain, by translating the axiomatization
of the finite valued  Lukasiewicz logic  Ln+1, a calculus sound and complete with respect Lin that
we denote by Hi

n.
Since  L∞ is algebraizable and the class MV of all MV-algebras is its equivalent quasivariety

semantics, finitary extensions of  L∞ are in 1 to 1 correspondence with quasivarieties of MV-
algebras. Actually, there is a dual isomorphism from the lattice of all finitary extensions of
 L∞ and the lattice of all quasivarieties of MV . Moreover, if we restrict this correspondence to
varieties of MV we get the dual isomorphism from the lattice of all varieties of MV and the
lattice of all axiomatic extensions of  L∞. Since  Ln+1 = Lnn is an axiomatic extension of  L∞,
 Ln+1 is an algebraizable logic with the class MVn = Q( LVn+1), the quasivariety generated by
 LVn+1, as its equivalent variety semantics. It follows from the previous theorem that Lin, for
every 1 ≤ i ≤ n, is also algebraizable with the same class of MVn-algebras as its equivalent
variety semantics. Thus, the lattices of all finitary extensions of Lin are isomorphic, and in fact,
dually isomorphic to the lattice of all subquasivarieties of MVn, for all 0 < i < n.

Therefore maximality conditions in the lattice of finitary (axiomatic) extensions correspond
to minimality conditions in the lattice of subquasivarieties (subvarieties). Thus, given two
finitary extensions L1 and L2 of a given logic Lin, where KL1 and KL2 are its associated MVn-
quasivarieties, L1 is strongly maximal with respect L2 iff KL1 is a minimal subquasivariety of
MVn among those MVn-quasivarieties properly containing KL2

. Moreover, if L1 and L2 are
axiomatic extensions of Lin, then KL1

and KL2
are indeed MVn-varieties. In that case, L1 is

maximal with respect L2 iff KL1
is a minimal subvariety of MVn among those MVn-varieties

properly containing KL2 .
The lattice of all axiomatic extensions  L∞ is fully described also by Komori in [7], thus

from the equivalence of Theorem 3, we can obtain the following maximality conditions for all
axiomatic extensions of Lin.

Theorem 4. Let 0 < i,m ≤ n be natural numbers such that m|n. If L is an axiomatic extension

of Lin, then L is maximal with respect to L
i/n
m iff L = L

i/n
m ∩ L

i/n

pk+1 for some prime number p

with p|n and a natural k ≥ 0 such that pk|m and pk+1 6 |m.

As a corollary we obtain that the sufficient condition of Theorem 2 is also necessary.

Corollary 3. Let 1 ≤ i,m ≤ n. Then Lin is maximal w.r.t. L
i/n
m if and only if there is some

prime number p and k ≥ 1 such that n = pk, and m = pk−1.

To obtain results on strong maximality we need to study finitary extensions of  L∞. The
task of fully describing the lattice of all all finitary extensions of  L∞, isomorphic to the lattice
of all subquasivarieties of MV , turns to be an heroic task since the class of all MV-algebras
is Q-universal [1]. For the finite valued case it is much simpler, since MVn is a locally finite
discriminator variety. Any locally finite quasivariety is generated by its critical algebras [5].
Critical MV-algebras were fully described in [6] and using this description we can obtain some
results on strong maximality.

First we need to introduce the following matrix logics: For every 1 ≤ i,m ≤ n,

L̄in = 〈LVn+1 × LV2, Fi/n × {1}〉 L̄i/nm = 〈LVm+1 × LV2, (Fi/n ∩ LVm+1)× {1}〉

Theorem 5. Let 0 < i ≤ n be natural numbers, let p be a prime number and let r = max{j ∈
N : pj |n}. Then we have: For every j such that (i − 1)p < j ≤ ip, Lin ∩ L̄

j/np
pr+1 is strongly

maximal with respect to Lin. Moreover, every finitary extension of some Ljk is strongly maximal
with respect Lin iff it is one of the preceding types.

3
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As a particular case we can also prove the following result.

Theorem 6. Let p be a prime number. Then, for every j such that 0 < j ≤ p:

• L̄jp is strongly maximal with respect to CPL and it is axiomatized by Hj
p plus the j-explosion

rule (expj) j(ϕ ∧ ¬ϕ)/⊥.

• Ljp is strongly maximal w.r.t. L̄jp.

3 Ideal paraconsistent logics

Arieli, Avron and Zamansy introduced in [2] the concept of ideal paraconsistent logics.

Definition 3. Let L be a propositional logic defined over a signature Θ (with consecuence
relation `L) containing at least a unary connective ¬ and a binary connective → such that:

(i) L is paraconsistent w.r.t. ¬ , i.e. there are formulas ϕ,ψ ∈ L(Θ) such that ϕ,¬ϕ 0L ψ;
and → is a deductive implication, i.e. Γ ∪ {ϕ} `L ψ iff Γ `L ϕ→ ψ,.

(ii) There is a presentation of CPL as a matrix logic L′ = 〈A, {1}〉 over the signature Θ such
that the domain of A is {0, 1}, and ¬ and→ are interpreted as the usual 2-valued negation
and implication of CPL, respectively, such that L is a sublogic of CPL.

Then, L is said to be an ideal paraconsistent logic if it is maximal w.r.t. CPL, and every proper
extension of L over Θ is not ¬-paraconsistent.

Lemma 2. Let 0 < i ≤ n. Lin is paraconsistent w.r.t. ¬ iff i
n ≤ 1

2

Since for every 0 < i ≤ n, there is a term definable implication ⇒i
n which is deductive

implication next result follows from Theorem 6

Theorem 7. Let p be a prime number, and let 1 ≤ i < p such that i/p ≤ 1/2. Then, Lip is a
(p+ 1)-valued ideal paraconsistent logic.1
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French), Comptes Rendus de l’Académie de Sciences de Paris (A-B), vol. 270 (1970),
pp.1349–1353.

[5] Wiesjlaw Dziobiak, On subquasivariety lattices of semi-primal varieties, Algebra Universalis,
vol. 20 (1985), pp.127–129.

[6] Joan Gispert and Antoni Torrens, Locally finite quasivarieties of MV-algebras, ArXiv, (2014)
pp.1–14. Online DOI: http://arxiv.org/abs/1405.7504.

[7] Yuichi Komori, Super- Lukasiewicz propositional logics, Nagoya Mathematical Journal, vol.
84 (1981), pp.119–133.

1Strictly speaking, in this claim we implicitly assume that the signature of Lip has been changed by adding

the definable implication ⇒i
p as a primitive connective.

4

42



On an implication-free reduct of MVn chains

Marcelo E. Coniglio1, Francesc Esteva2, Tommaso Flaminio2, and Lluis Godo2

1 Dept. of Philosophy - IFCH and CLE
University of Campinas, Campinas, Brazil

coniglio@cle.unicamp.br
2 IIIA - CSIC, Bellaterra, Barcelona, Spain
{esteva,tommaso,godo}@iiia.csic.es

Abstract

Let  Ln+1 be the MV-chain on the n+ 1 elements set  Ln+1 = {0, 1/n, 2/n, . . . , (n− 1)/n, 1}
in the algebraic language {→,¬} [3]. As usual, further operations on  Ln+1 are definable by
the following stipulations: 1 = x → x, 0 = ¬1, x ⊕ y = ¬x → y, x � y = ¬(¬x ⊕ ¬y),
x ∧ y = x � (x → y), x ∨ y = ¬(¬x ∧ ¬y). Moreover, we will pay special attention to the also
definable unary operator ∗x = x� x.

In fact, the aim of this paper is to study the {∗,¬,∨}-reducts of the MV-chains  Ln+1, that
will be denoted as  L∗

n+1, i.e. the algebra on  Ln+1 obtained by replacing the implication operator
→ by the unary operation ∗ which represents the square operator ∗x = x � x and which has
been recently used in [4] to provide, among other things, an alternative axiomatization for the
four-valued matrix logic J4 = 〈 L4, {1/3, 2/3, 1}〉. In this contribution we make a step further in
studying the expressive power of the ∗ operation, in particular we will focus on the question for
which natural numbers n the structures  Ln+1 and  L∗

n+1 are term-equivalent. In other words,
for which n the  Lukasiewicz implication → is definable in  L∗

n+1, or equivalenty, for which n
 L∗
n+1 is in fact an MV-algebra. We also show that, in any case, the matrix logics 〈 L∗

n+1, F 〉,
where F is an order filter, are algebraizable. What we present here is a work in progress.

Term-equivalence between  Ln+1 and  L∗
n+1

Let X be a subset of  Ln+1. We denote by 〈X〉∗ the subalgebra of  L∗
n+1 generated by X (in

the reduced language {∗,¬,∨}). For n ≥ 1 define recursively (∗)nx as follows: (∗)1x = ∗x, and
(∗)i+1x = ∗((∗)ix), for i ≥ 1.

A nice feature of the  L∗
n+1 algebras is that we can always define terms characterising the

principal order filters Fa = {b ∈  Ln+1 | a ≤ b}, for every a ∈  Ln+1.

Proposition 1. For each a ∈  Ln+1, the unary operation ∆a defined as

∆a(x) =

{
1 if x ∈ Fa

0 otherwise.

is definable in  L∗
n+1. As a consequence, for every a ∈  Ln+1, the operation χa that corresponds

to the characteristic function of a (i.e. χa(x) = 1 if x = a and χa(x) = 0 otherwise) is definable
as well.

Proof. The case a = 1 corresponds to the Monteiro-Baaz Delta operator and, as is well-known,
it can be defined as ∆1(x) = (∗)nx. For a = 0 define ∆a(x) = ∆1(x)∨¬∆1(x); then ∆a(x) = 1
for every x. Now, assume 0 < a = i/n < 1. It is not difficult to show that one can always find a
sequence of terms (operations) t1(x), . . . , tm(x) over {∗,¬} such that t1(t2(. . . (tm(x)) . . .)) = 1
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if x ∈ Fa while t1(t2(. . . (tm(x)) . . .)) < 1 otherwise. Then ∆a(x) = ∆1(t1(t2(. . . (tm(x)) . . .)))
for every x.

As for the operations χa, define χ1 = ∆1, χ0 = ¬∆1/n, and if 0 < a < 1, then define
χa = ∆a ∧ ¬∆a−1/n.

It is now almost immediate to check that the following implication-like operation is definable
in every  L∗

n+1: x⇒ y = 1 if x ≤ y and 0 otherwise. Indeed, ⇒ can be defined as

x⇒ y =
∨

0≤i≤j≤n

(χi/n(x) ∧ χj/n(y)).

Actually, one can also define Gödel implication on  L∗
n+1 by putting x⇒G y = (x⇒ y) ∨ y.

On the other hand, it readily follows from Proposition 1 that all the  L∗
n+1 algebras are

simple. Indeed, if a > b ∈  Ln+1 would be congruent, then ∆a(a) = 1 and ∆a(b) = 0 should be
so. Recall that an algebra is called strictly simple if it is simple and does not contain proper
subalgebras. It is clear then that in the case of  Ln+1 and  L∗

n+1 algebras, they are strictly simple
if {0, 1} is their only proper subalgebra.

Remark 2. It is well-known that  Ln+1 is strictly simple iff n is prime. Note that, for every
n, if B = (B,¬,→) is an MV-subalgebra of  Ln+1, then B∗ = (B,∨,¬, ∗) is a subalgebra of
 L∗
n+1 as well. Thus, if  Ln+1 is not strictly simple, then  L∗

n+1 is not strictly simple as well.
Therefore, if n is not prime,  L∗

n+1 is not strictly simple. However, in contrast with the case of
 Ln+1, n being prime is not a sufficient condition for  L∗

n+1 being strictly simple. In Lemma 7
below we will provide some examples of prime n for which  L∗

n+1 is not strictly simple, in view
of Theorem 6.

Lemma 3.  L∗
n+1 is strictly simple iff 〈(n− 1)/n〉∗ =  L∗

n+1.

Proof. The ‘only if’ direction is trivial. In order to prove the converse, assume that 〈a1〉∗ =  L∗
n+1

for a1 = (n − 1)/n. For i ≥ 1 let ai+1 = ti(ai) such that ti(x) = ∗x if x > 1/2, and
ti(x) = ¬x otherwise. Since  L∗

n+1 is finite, there is 1 ≤ i < j such that aj = ai and so
A1 := {ai | i ≥ 1} = {ai | 1 ≤ i ≤ k} for some k such that ai 6= aj if 1 ≤ i, j ≤ k. Let
A = A1 ∪ A2 ∪ {0, 1} where A2 = {¬a | a ∈ A1}. Since ∗1 = 1 and ∗x = 0 if x ≤ 1/2, A is
the domain of a subalgebra A of  L∗

n+1 over {∗,¬,∨} such that a1 ∈ A, hence 〈a1〉∗ ⊆ A. But
A ⊆ 〈a1〉∗, by construction. Therefore A = 〈a1〉∗ =  L∗

n+1.

Fact: Under the current hypothesis (namely, 〈a1〉∗ =  L∗
n+1): if n is even then n = 2 or n = 4.

Indeed, suppose that 〈a1〉∗ =  L∗
n+1 and n is even. If n = 2 or n = 4 then clearly  L∗

n+1 is strictly
simple. Now, assume n > 4. Observe that: (1) for any a ∈  L∗

n+1 \ {0, 1}, ∗a = i/n such that i
is even; and (2) if i < n is even then ¬(i/n) = (n− i)/n such that n− i is even. That being so,
if i/n ∈ (A1 ∪A2) \ {a1,¬a1} (recall the process described above) then i is even. But then, for
instance, 3/n /∈ A = 〈a1〉∗ =  L∗

n+1, a contradiction. This proves the Fact.

From the Fact, assume now that n is odd, and let a = ((n + 1)/2)/n and b = ((n − 1)/2)/n.
Since ¬a = b, ¬b = a and a, b ∈ A then, by construction of A, there is 1 ≤ i ≤ k such that either
a = ai or b = ai. If a = ai then ai+1 = ∗a = 1/n and so ai+2 = ¬ai+1 = ¬1/n = (n−1)/n = a1.
Analogously it can be proven that, if b = ai then a1 = aj for some j > i. This shows that
A1 = {a1, . . . , ak} is such that ak+1 = a1 (hence ak = 1/n). Now, let c ∈  L∗

n+1\{0, 1} such that
c 6= a1. If c ∈ A1 then the process of generation of A from c will produce the same set A1 and
so A =  L∗

n+1, showing that 〈c〉 =  L∗
n+1. Otherwise, if c ∈ A2 then ¬c ∈ A1 and, by the same

argument as above, it follows that 〈c〉 =  L∗
n+1. This shows that  L∗

n+1 is strictly simple.

Lemma 4. If  Ln+1 is term-equivalent to  L∗
n+1 then  L∗

n+1 is strictly simple.

2
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Proof. If  Ln+1 is term-equivalent to  L∗
n+1 then � is definable in  L∗

n+1, and hence 〈(n−1)/n〉∗ =
 L∗
n+1. Indeed, we can obtain (n− i− 1)/n = ((n− 1)/n)� ((n− i)/n) for i = 1, . . . , n− 1, and

1 = ¬0. By Lemma 3 it follows that  L∗
n+1 is strictly simple.

Corollary 5. If  Ln+1 is term-equivalent to  L∗
n+1 then n is prime.

Proof. If  Ln+1 is term-equivalent to  L∗
n+1 then  L∗

n+1 is strictly simple, by Lemma 4. By
Remark 2 it follows that n must be prime.

Theorem 6.  Ln+1 is term-equivalent to  L∗
n+1 iff  L∗

n+1 is strictly simple.

Proof. The ‘only if’ part is Lemma 4. For the ‘if’ part, since  L∗
n+1 is strictly simple then,

for each a, b ∈  Ln+1 where a /∈ {0, 1} there is a definable term ta,b(x) such that ta,b(a) = b.
Otherwise, if for some a /∈ {0, 1} and b ∈  Ln+1 there is no such term then A = 〈a〉∗ would be a
proper subalgebra of  L∗

n+1 (since b 6∈ A) different from {0, 1}, a contradiction. By Proposition 1
the operations χa(x) are definable for each a ∈  Ln+1, then in  L∗

n+1 we can define  Lukasiewicz
implication → as follows:

x→ y = (x⇒ y) ∨


 ∨

n>i>j≥0

χi/n(x) ∧ χj/n(y) ∧ ti/n,aij
(x)


 ∨


 ∨

n>j≥0

χ1(x) ∧ χj/n(y) ∧ y




where aij = 1− i/n+ j/n.

We have seen that n being prime is a necessary condition for  Ln+1 and  L∗
n+1 being term-

equivalent. But this is not a sufficient condition: in fact, there are prime numbers n for which
 Ln+1 and  L∗

n+1 are not term-equivalent.

Lemma 7. If n is a prime Fermat number greater than 5 then  Ln+1 and  L∗
n+1 are not term-

equivalent.

Proof. Recall that a Fermat number is of the form 22k

+ 1, with k being a natural number.
We are going to prove that if n is a prime Fermat number and a1 = (n− 1)/n, then 〈a1〉∗ is a
proper subalgebra of  L∗

n+1 (recall Theorem 6 and Lemma 3). Thus, let n > 5 be a prime Fermat
number, that is, a prime number of the form n = 2m + 1 with m = 2k and k > 1. The (m− 1)-
times iterations of ∗ applied to a1 produce ((n+ 1)/2)/n, that is: (∗)m−1(a1) = ((n+ 1)/2)/n.
Since ∗(((n + 1)/2)/n) = 1/n, the constructive procedure for generating the algebra 〈a1〉∗
described in the proof of Lemma 3 shows that 〈a1〉∗ = A has 2m+2 elements: m elements in A1,
plus m elements in A2 corresponding to their negations, plus 0 and 1. Since 2m+2 < 2m+1 = n
as n > 5, 〈a1〉∗ is properly contained in  Ln+1, and it is different from {0, 1}.

The first Fermat prime number greater than 5 is n = 17. It is easy to see that

〈16/17〉∗ = {0, 1/17, 2/17, 4/17, 8/17, 9/17, 13/17, 15/17, 16/17, 1}.

Actually, we do not have a full characterisation of those prime numbers n for which  Ln+1 and
 L∗
n+1 are term-equivalent. But computational results show that for prime numbers until 8000,

about 60% of the cases yield term-equivalence.

3
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Algebraizability of 〈 L∗
n+1, Fi/n〉

Given the algebra  L∗
n+1, it is possible to consider, for every 1 ≤ i ≤ n, the matrix logic

 L∗
i,n+1 = 〈 L∗

n+1, Fi/n〉. In this section we will shown that all the  L∗
i,n+1 are algebraizable in the

sense of Blok-Pigozzi [1], and the quasivarieties associated to  L∗
i,n+1 and  L∗

j,n+1 are the same,
for every i, j.

Observe that the operation x ≈ y = 1 if x = y and x ≈ y = 0 otherwise is definable
in  L∗

n+1. Indeed, it can be defined as x ≈ y = (x ⇒ y) ∧ (y ⇒ x). Also observe that
x ≈ y = ∆1((x⇒G y) ∧ (y ⇒G x)) as well.

In order to prove the main result of this section, we state the following:

Lemma 8. For every n, the logic  L∗
n+1 :=  L∗

n,n+1 = 〈 L∗
n+1, {1}〉 is algebraizable.

Proof. It is immediate to see that the set of formulas ∆(p, q) = {p ≈ q} and the set of pairs of
formulas E(p, q) = {〈p,∆0(p)〉} satisfy the requirements of algebraizability.

Blok and Pigozzi [2] introduce the following notion of equivalent deductive systems. Two
propositional deductive systems S1 and S2 in the same language are equivalent if there are
translations τi : Si → Sj for i 6= j such that: Γ `Si ϕ iff τi(Γ) `Sj τi(ϕ), and ϕ a`Si τj(τi(ϕ)).
From very general results in [2] it follows that two equivalent logic systems are indistinguishable
from the point of view of algebra, namely: if one of the systems is algebraizable then the other
will be also algebraizable w.r.t. the same quasivariety. This will be applied to  L∗

i,n+1.

Lemma 9. The logics  L∗
n+1 and  L∗

i,n+1 are equivalent, for every n and for every 1 ≤ i ≤ n−1.

Proof. It is enough to consider the translation mappings τ1 :  L∗
n+1 →  L∗

i,n+1, τ1(ϕ) = ∆1(ϕ),
and τi,2 :  L∗

i,n+1 →  L∗
n+1, τi,2(ϕ) = ∆i/n(ϕ).

Finally, as a direct consequence of Lemma 8, Lemma 9 and the observations above, we can
prove the following result.

Theorem 10. For every n and for every 1 ≤ i ≤ n, the logic  L∗
i,n+1 is algebraizable.

As an immediate consequence of Theorem 10, for each logic  L∗
i,n+1 there is a quasivariety

Q(i, n) which is its equivalent algebraic semantics. Moreover, by Lemma 9 and by Blok and
Pigozzi’s results, Q(i, n) and Q(j, n) coincide, for every i, j. The question of axiomatising
Q(i, n) is left for future work.
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Inconsistencies are no longer seen only as anomalies: it is a fact that collecting
data from different sources introduces them quite frequently. This may happen
in systems which are safety critical, such as health systems, aviation systems
and many others. As a means of increasing the reliability of those systems, one
resorts to paraconsistent reasoning in order to suitably address inconsistencies.
Paraconsistent logics allow the coexistence of contradictory information without
the collapse of the whole system. This field has been driven not only by theoretical
interest, but also by genuine problems in different scientific domains, such as
Computer Science, Medicine or Robotics.

There are several results connecting paraconsistency with modal logics. Quasi-
hybrid (QH) logic, as introduced in [4], combines basic hybrid logic – an extension
of modal logic able to refer to specific states through the introduction of new for-
mulas, called nominals, for naming states and a satisfaction operator @ such that
@iφ is true if and only if at the state whose name is i, φ is true – with paraconsis-
tency – where a formula and its negation are allowed to be simultaneously true.
QH logic is able to accommodate local inconsistencies by splitting the usual hy-
brid valuation into two, V + and V −, such that positive literals, @ip, are evaluated
resorting to the former, and negative literals, @i¬p, to the latter.

A model is described as the set of hybrid literals that are true in the model, and
it is possible to construct models for a set of formulas that contain inconsistencies.
For the models with minimum amount of information still capable of satisfying the
database given, it is introduced a measure of inconsistency that helps comparing
between models, and then choosing the least inconsistent. Another measure of
inconsistency assigns weights to variables so that one can take into account in
which variables it is more important to keep consistency.

There is a sound and complete tableau system for QH logic [3], obtained by
combining a tableau system for Quasi-classical logic with one for Hybrid logic,
[5] and [2, 1] respectively.

However, in this setting, as in classical logic, valuations are thought of as
giving the values 0 or 1 all the time. When dealing with information that we
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gather from different sources, assigning only those values is not enough to express
the certainty of such affirmations. How many times have we asked “Are you 100%
sure?” and got as answer “No, but I am 90%.”? With this in mind, it seemed
only natural to redesign the aforementioned Quasi-hybrid logic into a logic where
valuations behave in a fuzzy manner, and where both inconsistent and incomplete
formulas are allowed.

The “Fuzzified” version of Quasi-hybrid logic proposed here also uses two
valuations, but now, in addition to the propositional variable being evaluated,
valuations have embedded a local perspective, as follows: V ∗ : Prop×W→ [0, 1],
∗ ∈ {+,−}. So, we can define thresholds a, b ∈ [0, 1] such that @ip is true if
V +(p, w) > a, where w is the world named by the nominal i and it is false if
V −(p, w) > b. V + and V − cannot be extended to formulas as usual. Observe
that a and b do not need to be equal, that one could even set different thresholds
for each propositional variable and world, and that one could eventually consider
the relation ≥. In some sense, V +(p, w) can be regarded as evidence that supports
p at w and V −(p, w) as evidence that denies p at w. The higher a and b, the
more we demand on the certainty of the information.

In this new logic, reductio ad absurdum and disjunctive syllogism are dropped,
but the rules of weakening, double negation elimination, disjunction introduction
and transitivity still hold.

We can analyze the connection between V +(p, w) and V −(p, w) from two
perspectives: first in terms of the quality of the information, and second in terms
of quantity. For the former we have that:

• if V +(p, w) > a and V −(p, w) ≤ b, then p is true at w;

• if V +(p, w) ≤ a and V −(p, w) > b, then p is false at w;

• if V +(p, w) > a and V −(p, w) > b, then p is both true and false at w, thus
p is said to be inconsistent at w;

• if V +(p, w) ≤ a and V −(p, w) ≤ b, then p is neither true nor false at w,
thus p is said to be incomplete at w.

For the second perspective,

• if V +(p, w) + V −(p, w) = 1, then we have the expected amount of informa-
tion;

• if V +(p, w) + V −(p, w) > 1, then we have more information than expected
about p at w, and we call it overinformation;

• if V +(p, w) + V −(p, w) < 1, then we have less information than expected
about p at w, and we call it underinformation.

The figure below sketches the two perspectives overlapping, with a + b > 1.

2
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In the green area p is true at w, in the red area ¬p is
true at w, in the blue area, both p and ¬p are true at
w, and finally in the yellow area neither p nor ¬p are
true at w. Above the line V +(p, w) + V −(p, w) =
1 we have overinformation, and below it we have
underinformation.

We can derive very interesting – and sometimes
very intriguing – conclusions when using this logic.
In the previous example, there are regions which
correspond to full information (even overinforma-

tion) and yet neither p nor ¬p are true; that is because we are demanding a lot
with the thresholds set as they were.

Given a set of formulas ∆, we can always find a model such that all formulas
in ∆ are satisfied. Consider the following example: let ∆ = {@i3¬p,@i2p} and
set @ip to be true if V +(p, w) > 0.6 and false if V −(p, w) > 0.3. A model for ∆
could be M = 〈W,R,N, V +, V −〉 where W = {w}, R = {(w,w)}, N a function
that assigns nominals to worlds, in this case N : {i} → {w}, V +(p, w) = 0.61
and V −(p, w) = 0.31. Observe that, however, it is not always the case that we
can find a model where V +(p, w) + V −(p, w) = 1 for all p ∈ Prop, w ∈ W .

We can describe several measures of inconsistency for a model M, either
absolute or relative ones, from the combination of the perspectives enumerated
above. One that we would like to address, regarding quantity of information, is
the following:

Define A(M) = {(p, w) | p ∈ Prop, w ∈ W, V +(p, w) + V −(p, w) > 1} and
B(M) = {(p, w) | p ∈ Prop, w ∈ W, V +(p, w) + V −(p, w) < 1},

MOver(M) =
∑

A(M)

[(V +(p, w) + V −(p, w))− 1]

and

MUnder(M) =
∑

B(M)

[1− (V +(p, w) + V −(p, w))].

The total measure (a relative one) would be given as follows:

MQuant(M) =
MOver(M) + MUnder(M)

|Prop| × |W | .

From the point of view of the quality of information, consider the following:

MIncons(M) = |{(p, w) | V +(p, w) > ap,w & V −(p, w) > bp,w}|
and

3
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MIncomp(M) = |{(p, w) | V +(p, w) ≤ ap,w & V −(p, w) ≤ bp,w}|.
where ap,w and bp,w are the thresholds for which @ip and @i¬p hold, respectively
(w is the world named by i).

Thus for this perspective, we propose the following relative measure:

MQual(M) =
MIncons(M) + MIncomp(M)

|Prop| × |W | .

Then we can combine MQuant(M) and MQual(M).
We would like to point out that both MOver(M), MUnder(M), |A(M)|,

|B(M)|, MIncons(M) and MIncomp(M) could be considered by themselves as
absolute measures.

For the example given, we get the next results:

MOver(M) = 0 MIncons(M) = 1
MUnder(M) = 1− 0.92 = 0.08 MIncomp(M) = 0
MQuant(M) = 0.08

1
= 0.08 MQual(M) = 1

1
= 1

Conclusion. This work relates the subjects of paraconsistency, fuzzy valuations
and hybrid logic. We would like to continue exploring measures of inconsistency
in this scenario, as well as to study some applications in which this approach
might be useful, namely when valuations V + and V − correspond to information
obtained by the use of complementar sensors, in which case getting values such
that V + + V − 6= 1 reveals that at least one of them is malfunctioning.
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Abstract

We study a functionality property of partially-defined fuzzy relations, i.e., fuzzy rela-
tions with membership functions that are not necessarily defined everywhere. We handle
them in a partial fuzzy logic. We analyze some selected known results for functional fuzzy
relations and we extend them suitability to functional partial fuzzy relations.

1 Introduction

Functionality property is one of the crucial properties of fuzzy set theory from the theoretical
as well as practical point of view. In [5] a functionality property has been studied for standard
fuzzy relations and we switch our background logic to Partial Fuzzy Logic (PFL) [3]. This logic
is designed to handle objects that can have undefined membership degrees. We will provide
some initial results on the preservation of partial graded functionality under partial fuzzy set
and relational operations.

2 Partial fuzzy propositional logic

Partial fuzzy logic proposed in [3] is based on any ∆-core [7] fuzzy logic L and defined as follows
(for details see [3]):

• The language (or signature) S ∗ of L∗ extends the language S of L by the truth constant
∗ (representing the undefined truth degree of propositions), the unary connective ! (for
the crisp modality “is defined”), the unary Bochvar-style connective uB for each unary
u ∈ S , the binary Bochvar-style connectives cB for each binary c ∈ S and the binary
connective ∧K (for Kleene-style min-conjunction).

• Intended algebras (of truth values) for L∗ are defined by expanding the algebras for L
by a dummy element ∗ (to be assigned to propositions with undefined truth). In the
intended L∗-algebra L∗ = L ∪ {∗} (where L is an L-algebra), the connectives of L∗ are
interpreted as described by the following truth tables, for all unary connectives u ∈ S ,
binary connectives c ∈ S (and similarly for higher arities), α, β ∈ L and γ, δ ∈ L \ {0}:

!

α 1

∗ 0

uB

α uα

∗ ∗

cB β ∗
α α c β ∗
∗ ∗ ∗

∧K 0 δ ∗
0 0 0 0

γ 0 γ ∧ δ ∗
∗ 0 ∗ ∗

(1)
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• Tautologies of L∗ are defined as formulae that are evaluated to 1 under all evaluations
in all intended L∗-algebras. Entailment in L∗ is defined as transmission of the value 1
under all evaluations in all intended L∗-algebras. As usual, we write |= ϕ to indicate the
tautologicity of ϕ in L∗ and Γ |= ϕ to denote the fact that the set Γ of formulae entails
the formula ϕ in L∗.

Since in this paper we only deal with the semantics of fuzzy partial logic and fuzzy partial set
theory, we leave the axiomatic system for L∗ aside.

The connectives of S ∗ make a broad class of derived connectives available in L∗(for more
details see [3]). This includes several useful families of connectives well-known from three-valued
logic (see, e.g., [4]), from which we will use the following two:

• The Bochvar-style connectives cB ∈ {∧B,∨B,&B}, which treat ∗ as the annihilator. Recall
that in L∗, the connectives of the original language S of the underlying fuzzy logic L are
actually interpreted Bochvar-style: see the truth tables (1) above.

• The Sobociński-style connectives cS ∈ {∧S,∨S,&S}, which treat ∗ as the neutral element.

Moreover, the following useful unary and binary connectives are L∗-definable:

x ?x ↓x ↑x
α 0 α α

∗ 1 0 1

→∗ β ∗
α α→ β 0

∗ 1 1

→∗ β ∗
α α→ β 1

∗ 0 1

(2)

for α, β 6= ∗. For more details on fuzzy partial propositional logic (including examples of valid
laws and several metamathematical results) see [3].

A predicate variant L∀∗ of L∗ can be defined in a manner analogous to other fuzzy first-order
logics (cf., e.g., [1]). Like in propositional L∗, the (standardly defined) first-order formulae of
L∀∗ are evaluated in L∗-algebras of truth values. The interpretation of a unary (and analogously
higher-arity) predicate symbol P in a given model M is thus a total function PM : DM → L∗,
where DM is the domain of M and L∗ is an intended L∗-algebra of truth values.

The Tarski conditions for terms, atomic formulae, and propositional connectives are defined
as usual; because of space limitations, we omit them here and refer the reader to [1, Sect. 5].
Let the truth value (in L∗) of the formula ϕ in a model M under an evaluation e of individual

variables be denoted by ‖ϕ‖Me .

The primitive quantifiers ∀B, ∃B of L∀∗ are interpreted Bochvar-style, yielding ∗ whenever
there is an undefined instance of the quantified formula. ∀B, ∃B are of limited utility but they
are sufficient for the definability of further useful quantifiers in L∀∗ by means of the connectives
of L∗. One of them is the Sobociński-style quantifiers with the following Tarski conditions:

‖(∀Sx)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x 7→a] = ∗ for all a ∈ DM

infa∈DM
‖↑ϕ‖Me[x 7→a] otherwise

(3)

‖(∃Sx)ϕ‖Me =

{
∗ if ‖ϕ‖Me[x 7→a] = ∗ for all a ∈ DM

supa∈DM
‖↓ϕ‖Me[x7→a] otherwise

(4)

In a standard manner we introduce partial fuzzy logic of a higher order, see [2].

2
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3 Partial fuzzy relational operations

Due to a various treatments of undefined values we have the following two main options to
define relational operations:

• Bochvar intersection: (R uB S)(x, y) ≡df R(x, y) ∧B S(x, y),

• Sobociński intersection: (R uS S)(x, y) ≡df R(x, y) ∧S S(x, y),

• Bochvar strong-intersection: (R ∩B S)(x, y) ≡df R(x, y) &B S(x, y),

• Sobociński strong-intersection: (R ∩S S)(x, y) ≡df R(x, y) &S S(x, y).

The following relational composition sup-T of partial fuzzy relations is intended to be computed
in a standard way on the intersection of the domains of partial fuzzy relations and otherwise
it should remain undefined. It leads to the following definition by means of Bochvar and
Sobociński connectives and quantifiers:

• Sobociński–Bochvar sup-T composition

(R ◦SB S)(x, y) ≡df (∃Sz)
(
R(x, z) &B S(z, y)

)
,

Furthermore, let us define the following graded and crisp properties of fuzzy relations:

• Sobociński–Bochvar subsethood : R⊆SB S ≡df (∀Sx)(∀Sy)
(
R(x, y)→B S(x, y)

)
,

• Sobociński–Sobociński subsethood : R ⊆SS S ≡df (∀Sx)(∀Sy)
(
R(x, y)→S S(x, y)

)
,

• Totalness: Tot(R) ≡df (∀Bx)(∀By)!R(x, y).

4 Functionality property of partial fuzzy relations

In our approach, functionality property is a direct generalization of the classical property that
specifies functions out of relations. In the fuzzy community the functionality property has been
studied by many authors and it is also known as the unique mapping [6]. We will propose the
notion of functionality for partial fuzzy relations in agreement with our intuitive expectations.
Further, we will study its properties w.r.t. fuzzy set operations and a relational composition.

Definition 1. The functionality property of R w.r.t. ≈1,≈2 is defined as

Func≈1,≈2
(R) ≡df (∀Sx)(∀Sx

′)(∀Sy)(∀Sy
′)(x ≈1 x

′ &B R(x, y) &B R(x′, y′)→B y ≈2 y
′).

Let us give some examples of tautologies of L∀∗ for relational operations:

Tot(≈1),Tot(≈2) |=L∀∗ Func≈1,≈2
(F ) ∧B Func≈1,≈2

(G)→∗ Func≈1,≈2
(F uB G),

Tot(≈1),Tot(≈2) |=L∀∗ Func≈1,≈2
(F ) &B Func≈1,≈2

(G)→∗ Func(≈1)2,(≈2)2(F ∩B G),

where x ≈2
i x
′ ≡df (x ≈i x

′) &B (x ≈i x
′), i = 1, 2.

The situation is analogous with Sobociński operations. The resulting domain of Sobociński
operations is the union of domains of the input relations. Therefore, the following formulas work
for both orderings induced by →∗ and →∗. Here, we will present tautologies only with →∗:

Tot(≈1),Tot(≈2) |=L∀∗ Func≈1,≈2
(F ) ∧S Func≈1,≈2

(G)→∗ Func≈1,≈2
(F uS G),

Tot(≈1),Tot(≈2) |=L∀∗ Func≈1,≈2
(F ) &S Func≈1,≈2

(G)→∗ Func(≈1)2,(≈2)2(F ∩S G).

3
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Moreover, the following formulas hold for the relational composition of partial fuzzy rela-
tions:

Tot(≈1),Tot(≈2),Tot(≈3) |=L∀∗ Func≈1,≈2(F ) &B Func≈2,≈3(G)→∗ Func≈1,≈3(F ◦SB G),

Tot(≈1),Tot(≈2),Tot(≈3) |=L∀∗ Func≈1,≈2(F ) &S Func≈2,≈3(G)→∗ Func≈1,≈3(F ◦SB G).

Let us conclude by giving some examples of tautologies describing a transfer of functionality
property:

Tot(≈1),Tot(≈2) |=L∀∗ (F ⊆SB G)2 →∗ (Func≈1,≈2
(F )→B Func≈1,≈2

(G ∩B domF )),

Tot(≈1),Tot(≈2) |=L∀∗ (F ⊆SS G)2 →∗ (Func≈1,≈2(F )→S Func≈1,≈2(G)),

where ϕ2 ≡df ϕ &B ϕ and (domF )(x, y) ≡df !F (x, y). Replacing →∗ by →∗ in the second
formula leads again to tautology, but it is not so for the first one.

Acknowledgments The work is supported by projects 16–19170S of GA ČR and LQ1602 of
MŠMT ČR (NPU II).
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Fuzzy structures constitute the semantics of first-order Mathematical Fuzzy Logic. These
structures can be seen as generalizations of the classical ones by interpreting predicate symbols
as functions from the domain to arbitrary lattice-ordered sets, instead of the two element
Boolean algebra. Model theory of fuzzy structures is an evolving branch of Mathematical
Fuzzy Logic which investigates, among others, how results from classical model theory are
transformed within this fuzzy framework [6]. In this talk we focus on Omitting Types Theorem
and investigate its analog in the framework of Mathematical Fuzzy logic.

In the classical model theory, a type is a syntactic object – a set of formulas – which shows
how the elements of structures might behave. For a type and a structure, a basic question is
whether there is an element of the structure ‘described’ by the type; if yes, the type is called
realized, otherwise omitted. For example, let T be the theory of Peano arithmetic and let Σ be
the set of formulas {0 6= x, S0 6= x, SS0 6= x, . . .}. The standard model of T omits Σ, while all
the nonstandard models of T realize Σ (see, e.g., [4]). For a type Σ and a theory T , the Omitting
Types Theorem gives a sufficient condition for the existence of a model of T omitting Σ.

Omitting types theorem can be investigated in different settings, e.g., for continuous logic or
in the context of model theory of metric structures [3,9]. Previous attempts [2,16] to formulate
and prove an analog of this theorem in the realm of Mathematical Fuzzy Logic were restricted
to (variants) of  Lukasiewicz logic [12, 15, 17]. To investigate the Omitting Types Theorem for
wider classes of fuzzy logics, one has to look into its key ingredient – the notion of isolation.

In classical logic, a type Σ (i.e., a set of formulas with free variables) is isolated in a theory
T (i.e., a set of sentences) if there exists a formula δ(x̄) such that

a) T ∪ {δ(x̄)} is satisfiable, and

b) T |= δ(x̄)→ σ(x̄), for all σ(x̄) ∈ Σ.

This simple and elegant condition is really ‘tailored’ for the use in classical logic, and a more
complex notion is needed for the fuzzy setting.

In order to formulate our notion of isolation we need to resort to a notion of consequence
common in classical model theory but (up to recently) mostly ignored in the fuzzy logic liter-
ature: for a set of formulas Γ, we say that a formula ϕ is a consequence of Γ, written Γ |=l ϕ,
if for each safe structure M and for each M-evaluation v, if all formulas of Γ are valid1 in M
under the evaluation v, then so is ϕ.

Definition 1 (Isolation). A type Σ is isolated in a theory T if there are formulas ϕ(x̄, ȳ) and
τ(x̄, ȳ) such that

1. T, ϕ(x̄, ȳ) 6|=l τ(x̄, ȳ),

2. T, ϕ(x̄, ȳ) |=l σ(x̄) ∨ τ(x̄, ȳ), for all σ(x̄) ∈ Σ.

∗The work of Petr Cintula was supported by the grant GA17-04630S of the Czech Science Foundation and
by RVO 67985807.

1The definition of validity depends on the fuzzy logic in question; the most common ones are being equal to
the top of the lattice of truth values or being equal to or greater than a selected least designated element.
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For classical logic both notions of isolation coincide. Indeed, if a type satisfies conditions a)
and b) then taking τ to be 0, we see that it is isolated in the sense of Definition 1. Conversely, if
we are in classical logic and a type is isolated in the sense of Definition 1, i.e., there are formulas
ϕ(x̄, ȳ) and τ(x̄, ȳ) such that conditions 1) and 2) are satisfied, then the type is isolated also in
the classical sense by taking δ(x̄) = (∃ȳ)(ϕ(x̄, ȳ) ∧ ¬τ(x̄, ȳ)).

Apart from the notion of isolation, there is another problem caused by our non-classical
setting: in classical logic one could construct the canonical model of a Henkin theory whose
elements ‘are’ just the constants newly added in the construction due to the fact that for any
closed term t we have (∃x)(x = t) and so there is a ‘new’ constant c = t. As in a language
without equality we cannot do the same trick, during the construction we have to make sure
that the type is not ‘realized’ by some already existing closed term. Therefore we must assure
that there are not too many closed terms occurring in axioms of T and so our variant of the
Omitting types theorem is rather complex:

Theorem 1 (Omitting types [5]). Let L be an axiomatic expansion of the Uninorm Logic UL
such that for all formulas ϕ,ψ, χ:

ϕ→ ψ,ψ → ϕ `L χ→ χ′ where χ′ results from χ by replacing its subformula ϕ by ψ.

Furthermore let P be a countable predicate language with only nullary function symbols, T a
consistent theory such that at most finitely many of its elements involve object constants, and
Σ a non-isolated type over T . Then there is a countable model of T which omits Σ.

The class of logics covered by this theorem contains the most prominent fuzzy logics such as
the Esteva and Godo’s logic MTL of left-continuous t-norms [10], Hájek’s logic BL of continuous
t-norms,  Lukasiewicz Logic, Gödel logic, Metcalfe and Montagna’s Uninorm Logic UL [13],
classical logic, all core fuzzy logics of Hájek and Cintula [11].

Let us conclude by a few remarks and comments of possible future research in this area:

• One could easily observe that we could generalize Theorem 1 in such a way that the
required model of T would omit countably many non-isolated types at once.

• Working in logics with crisp equality would allow us to drop the finiteness restriction
in Theorem 1 and prove it for predicate languages involving general function symbols;
however this kind of fuzzy logics are relatively unexplored.

• Our rather complex notion of isolation can be greatly simplified in classical setting; a
natural question is if the same can be done (at least partly) in some strong fuzzy logics.

• In classical logic the isolated types over a complete theory are realized in all its models.
This is clearly not the case in our setting; again, an interesting question would be to
explore in which fuzzy logics (and for which notion of complete theory) the claim holds.

• We have identified several properties a logic has to satisfy for our proof of Theorem 1
to go through. All but one of them can be proved for much wider classes of fuzzy logics
(e.g., for core semilinear logics of [7] or for finitary weakly implicative lattice-disjunctive
semilinear logics of [8]). The problematic property is called preSkolemization: for any
theory T , formulas ϕ(x), ψ, and constant symbol c not occurring in T ∪ {ϕ(x), ψ},

T, (∃x)ϕ(x) ` ψ iff T, ϕ(c) ` ψ.

Interestingly enough, this property holds in many of the logics mentioned earlier at least
in a restricted setting (e.g., in logics with Baaz–Monteiro 4 connective [1,14], it holds for
all formulas starting with 4). It would be interesting to see if it would allow us to prove
our result either for all types, or at least for some special ones.
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[14] António A. Monteiro. Sur les algèbres de Heyting symétriques. Portugaliae Mathematica, 39(1–
4):1–239, 1980.

[15] Daniele Mundici. Advanced  Lukasiewicz Calculus and MV-Algebras, volume 35 of Trends in Logic.
Springer, New York, 2011.
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In classical first-order logic, questions of validity and semantic consequence reduce to the
satisfiability of a set of sentences; Skolemization methods and Herbrand theorems then further
reduce these questions to the satisfiability of a set of propositional formulas (see, e.g., [4]).
For first-order non-classical logics, the situation is not so straightforward. First, due to the
absence of certain quantifier shifts, formulas are not always equivalent to prenex formulas, and,
second, semantic consequence does not (typically) reduce to satisfiability. Hence (non-prenex)
sentences should be considered separately as premises and conclusions of consequences. General
Skolemization methods and Herbrand theorems therefore take various forms, applying either
to the left or right of the consequence relation, and to restricted sets of formulas.

Skolemization procedures can be more carefully defined to replace strong occurrences of
quantifiers in subformulas on the left, and weak occurrences on the right; however, satisfiability
or, more generally, semantic consequence, may not be preserved. For example, in first-order
intuitionistic logic, formulas such as ¬¬(∀x)P (x)→ (∀x)¬¬P (x) do not Skolemize (see, e.g., [1],
also for methods for addressing these problems). An alternative solution is provided by the
more general ”parallel Skolemization” procedure developed in [2,5]. The key idea is to remove
strong occurrences of quantifiers on the left of the consequence relation and weak occurrences of
quantifiers on the right by introducing disjunctions and conjunctions, respectively, of formulas
with multiple new function symbols. In particular, a sentence (∀x̄)(∃y)ϕ(x̄, y) occurring as the
conclusion of a consequence is rewritten for some n ∈ N+ as (∀x̄)

∨n
i=1 ϕ(x̄, fi(x̄)) where each

function symbol fi is new for i = 1 . . . n. This method has been used by Baaz and Iemhoff
in [2] to establish Skolemization results for first-order intermediate logics whose Kripke models
(with or without the constant domains condition) admit a finite model property, and by the
current authors in [5] to obtain similar results for a wide range of substructural and many-valued
logics.

In the work reported here, we introduce a general framework for the study of first-order non-
classical logics based on algebras with a (complete) lattice reduct and additional connectives
that are monotone or antitone in each argument. Such logics include first-order fuzzy logics,
intermediate logics, exponential-free linear logic, relevance logics, and logics without contraction
(see, e.g., [7–9, 11, 12]). To obtain the desired generality, we consider consequence relations on
inequalities between formulas, obtaining an obvious reduction to formulas in the presence of
suitable connectives.

∗This work is supported by RVO 67985807 and Czech Science Foundation GBP202/12/G061 (P. Cintula)
and Swiss National Science Foundation grant 200021 146748 (G. Metcalfe).
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We study Herbrand and Skolemization theorems in this setting and obtain general results
covering and extending existing results from [1, 3, 5, 6]. In particular, we prove a Herbrand
theorem for logics satisfying a finitarity condition for certain “propositional consequences” and
show that under certain additional assumptions, this finitarity condition is necessary for the
theorem to hold. We also establish a parallel Skolemization property for logics admitting
variants of the witnessed model property introduced by Hájek in [10] and, that for finitary
logics, this witnessed model property is equivalent to parallel Skolemization. We also consider
logics that satisfy only a weaker witnessing property and admit parallel Skolemization for prenex
sentences.
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A residuation algebra is an expansion of a bounded distributive lattice A by a pair of binary
division operations \ and / such that

• \ and / preserve finite meets occurring in their numerators, and

• for all a, b, c ∈ A,
b ≤ a\c ⇐⇒ a ≤ c/b

Residuation algebras abound in algebraic logic, where the operations \ and / interpret im-
plication connectives arising as the residuals of groupoid operations in bounded, distributive
residuated lattice-ordered groupoids. Such algebraic structures (and the logics for which they
provide semantics) often admit fruitful duality-theoretic investigation, in which the operations
\ and / are encoded on duals by a ternary relation R (see, e.g., [5]). In the best cases, R may
be taken as the graph of a (possibly partial) function. For example, residuation algebras that
satisfy the distribution law

a\(b ∨ c) = (a\b) ∨ (a\c),
have functional duals in the aforementioned sense. Semilinear commutative residuated lat-
tices (i.e., subdirect products of totally-ordered commutative residuated lattices) satisfy this
distribution law, and consequently residuated structures with functional duals include: Gödel
algebras, Sugihara monoids, MTL-algebras, and in particular MV-algebras and BL-algebras.
Lattice-ordered groups and lattice-ordered loops are examples of residuated structures satisfy-
ing the above distribution law and yet failing to be semilinear in general. Due to the relative
simplicity of binary operations as opposed to ternary relations, functionality affords an avenue
of duality-theoretic inquiry that the complexity of ternary relational structures may obstruct
in other situations (see, e.g., [2]).

Residuation algebras with functional duals were studied in the context of automata theory
in [3], where Gehrke employs extended Stone-Priestley duality [5] in order to capture topological
algebras1 as dual spaces. Among other things, Gehrke characterizes (see [3, Proposition 3.16])
those residuation algebras (A, \, /) for which the relation corresponding to \ and / under the
Stone-Priestley duality is functional. Gehrke’s investigation of functionality is conducted in the
context of topological duality for distributive lattices, and makes no explicit use of the theory
of canonical extensions. Moreover, her characterization is second-order, and she leaves open the
question of whether there is any first-order condition in the language of residuation algebras
that characterizes functionality on duals.

Motivated by this question, the present study treats the functionality of the duals of resid-
uation algebras in the context of their canonical extensions (see, e.g., [4]). Given a residuation

1Given an algebraic similarity type τ , a topological algebra of type τ is an algebra of type τ in the category
of topological spaces, i.e. it is a topological space enriched with continuous operations for each f ∈ τ .
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algebra A = (A, \, /), as is standard in the theory of canonical extensions we define its re-
lational dual structure Aδ

+ = (J∞(Aδ),≥, R), where J∞(Aδ) is the collection of completely
join-irreducible elements of the canonical extension Aδ of A, and R is a ternary relation on
J∞(Aδ) defined by

R(x, y, z) ⇐⇒ x ≤ y · z,
where · is the common residual of the π-extensions \π and /π of \ and / in Aδ. We say that
R is functional provided that y · z ∈ J∞(Aδ) ∪ {⊥} whenever y, z ∈ J∞(Aδ). In this event, we
also say that Aδ

+ is functional. Our approach yields the following.
First, moving to the environment of canonical extensions provides a more transparent and

modular account of how the validity of the distribution law a\(b∨ c) = (a\b)∨ (a\c) guarantees
the functionality of the dual relation. Using the fact that this identity is canonical (see [1]), we
show that the validity of this distribution law forces the product of join-irreducible elements
(where product is given by the common residual of \π and /π in the canonical extenion) to be
either ⊥ or finitely join-prime. Prime closed elements of the canonical extension are in turn
completely join-irreducible. We obtain the functionality of the dual relation as a consequence of
these two facts, only the first of which depends on the validity of the aforementioned distributive
law.

Second, we offer a partial answer to the motivating question. Although our analysis of the
distribution law a\(b ∨ c) = (a\b) ∨ (a\c) entails that there are large varieties of residuation
algebras whose members have functional duals, we establish that there is no equational or
quasiequational condition that characterizes the functionality of duals as a consequence of the
following.

Theorem 1. There is no collection of universal first-order sentences Σ in the language of
residuation algebras such that for each residuation algebra A, A |= Σ if and only if Aδ

+ is
functional.

Third, our use of the theory of canonical extensions allows us to present an entirely alge-
braic characterization of functionality on duals in the spirit of [3, Proposition 3.16], freeing
this characterization of particular duality-theoretic representations. Specifically, we obtain the
following result.

Theorem 2. The following conditions are equivalent for any residuation algebra A = (A, \, /):

1. The relational structure Aδ
+ is functional.

2. ∀a, b, c ∈ A,∀x ∈ J∞(Aδ)[x ≤ a⇒ ∃a′[a′ ∈ L & x ≤ a′ & a\(b ∨ c) ≤ (a′\b) ∨ (a′\c)].

3. For all x ∈ J∞(Aδ), the map x\π( ) : O(Aδ) → O(Aδ) is ∨-preserving, where O(Aδ)
denotes the join-closure of A in Aδ.

As an added benefit, our approach to functionality via canonical extensions sheds light on
the phenomenon of totality, i.e., where the dual relation corresponding to the division operations
is not only a functional relation, but also a total function.
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Abstract

Hahn’s celebrated embedding theorem asserts that linearly ordered Abelian groups embed in the
lexicographic product of real groups. In this talk the partial-lexicographic product construction is
introduced, a class of residuated monoids, namely, group-like FLe-chains which possess only a finite
number of idempotents are represented as partial-lexicographic products of linearly ordered Abelian
groups, and as a corollary, Hahn’s theorem is extended to this residuated monoid class by show-
ing that any such algebra embeds in some partial-lexicographic product of linearly ordered Abelian
groups. By relying on this embedding theorem we can prove that the logic IULfp enjoys finite strong
standard completeness.

Mathematical fuzzy logics have been introduced in [5], and the topic is a rapidly growing field ever
since. Substructural fuzzy logics were introduced in [12] as substructural logics that are standard com-
plete, that is, complete with respect to algebras whose lattice reduct is the real unit interval [0, 1]. Also,
standard completeness for several substructural logics, all are stronger than the there-introduced Uni-
norm Logic (UL), has been proven, with the notable exception of the Involutive Uninorm Logic (IUL).
Its standard completeness has remained an open problem, which has withstood the attempts using the
usual embedding method of [7] or the density elimination technique of [12]. An algebraic semantics for
IUL is the variety of bounded involutive FLe-chains. The class of bounded involutive FLe-chains is
quite rich; even its integral algebras over [0, 1], the standard IMTL-chains is a class containing, e.g., the
connected rotations [6] of all standard MTL-chains.

Group-like FLe-chains are involutive FLe-chains satisfying the condition that the unit of the
monoidal operation coincides with the constant that defines the order-reversing involution ′; in nota-
tion t = f . Since for any involutive FLe-chain t′ = f holds, one extremal situation is the integral case,
that is, when t is the top element of the universe and hence f is its bottom one, and the other extremal
situation is the group-like case when the two constants coincide. Group-like FLe-chains constitute the
algebraic semantics for Involutive Uninorm Logic with Fixed Point (IULfp), which was introduced in
[11]. Prominent examples of group-like FLe-algebras are lattice-ordered Abelian groups and odd Sugi-
hara algebras, the latter constitute an algebraic semantics of IUML∗, which is a logic at the intersection
of relevance logic and fuzzy logic [3]. These two examples are extremal in the sense that lattice-ordered
Abelian groups have a single idempotent element, namely the unit element, whereas all elements of any
odd Sugihara algebra are idempotent.

In order to make a step in the direction of settling the standard completeness problem for IUL in
the algebraic manner of [7], and in order to narrow the gap between the two extremal classes mentioned
above, in this talk we gain a deeper knowledge about the class of involutive FLe-chains by focusing first
on group-like FLe-chains. For those group-like FLe-chains, which have finitely many idempotents, a
representation theorem will be proven, using only linearly ordered Abelian groups as building blocks
and the here-defined partial-lexicographic product construction. The naturally ordered condition or its
dual notion, called divisibility, has always been a postulate in previous structural descriptions of classes
of residuated lattices, see e.g. [10, 13]. An exception is in [8, 9], where only a weakened form of the
naturally ordered condition, called absorbent continuity, has been assumed. On the other hand, as it

∗This work was supported by the GINOP 2.3.2-15-2016-00022 grant.
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was pointed out in [3], non-integral residuated structures, and consequently, substructural logics with-
out the weakening rule, are far less understood at present then their integral counterparts. Therefore,
from a general viewpoint, the algebraic part of our study is a contribution to non-integral residuated
structures without postulating even a weakened form of the divisibility condition. Hahn’s embedding
theorem states that linearly ordered Abelian groups embed in some lexicographic product of real groups
[4]. Conrad, Harvey, and Holland generalized Hahn’s theorem for lattice-ordered Abelian groups in [1].
As a corollary of our representation theorem, we extend Hahn’s theorem to those group-like FLe-chains
which possess finitely many idempotents. The price for not having inverses will be that the embedding
is made into partial-lexicographic products rather than lexicographic ones; the building blocks (linearly
ordered Abelian groups) remain the same. We also claim that every finitely generated group-like FLe-
chain possesses only finitely many idempotents. By relying on this and our embedding theorem we can
prove that the logic IULfp enjoys finite strong standard completeness.

Let (X,≤) be a chain (a linearly ordered set). For x ∈ X define the predecessor x↓ of x to be the
maximal element of the set of elements which are smaller than x, if it exists, define x↓ = x otherwise.
Define x↑ dually. An FLe-algebra1 is a structure (X,∧,∨, ∗◦,→∗◦, t, f) such that (X,∧,∨) is a lattice,
(X,≤, ∗◦, t) is a commutative, residuated2 monoid, and f is an arbitrary constant. One defines x′ =
x→∗◦ f and calls an FLe-algebra involutive if (x′)′ = x holds. We call an FLe-algebra group-like if it is
involutive and t = f .

Definition 1. (Partial Lexicographic Products) Let X = (X,∧X ,∨X , ∗,→∗, tX , fX) be a group-
like FLe-algebra and Y = (Y,∧Y ,∨Y , ∗◦,→∗◦, tY , fY ) be an involutive FLe-algebra, with residual com-
plement ′

∗
and ′, respectively.

1. Add a new element> to Y as a top element, and extend ∗◦ by>∗◦y = y∗◦> = > for y ∈ Y ∪{>},
then add a new element ⊥ to Y ∪ {>} as a bottom element, and extend ′ by ⊥′ = >, >′ = ⊥ and ∗◦ by
⊥ ∗◦ y = y ∗◦ ⊥ = ⊥ for y ∈ Y ∪ {>,⊥}. Let X1 and X2 be cancellative subalgebras of X such that
X2 ≤ X1. We define X

Γ(X2,Y)

Γ(X1,>⊥)
=
(
X

Γ(X2,Y )

Γ(X1,>⊥)
,≤, �,→�, (tX , tY ), (fX , fY )

)
, where

X
Γ(X2,Y )

Γ(X1,>⊥)
= (X1 × {>,⊥}) ∪ (X2 × Y ) ∪ ((X \X1)× {⊥}) ,

≤ is the restriction of the lexicographical order of ≤X and ≤Y ∪{>,⊥} to XΓ(X2,Y )

Γ(X1,>⊥)
, � is defined coor-

dinatewise, and the operations ′
�

and→� are given by

(x1, y1)→� (x2, y2) =
(

(x1, y1) � (x2, y2)
′�
)′�

and (x, y)
′�

=

{
(x′
∗
, y′) if x ∈ X1

(x′
∗
,⊥) if x 6∈ X1

.

Call X
Γ(X2,Y)

Γ(X1,>⊥)
the (type III) partial-lexicographic product of X,X1, X2, and Y .

In particular, if X1 = X2 then call X
Γ(X1,Y)

Γ(X1,>⊥)
the (type I) partial-lexicographic product of X,X1, and

Y , and denote it by XΓ(X1,Y>⊥).
2. Add a new element> to Y as a top element, and extend ∗◦ by>∗◦y = y∗◦> = > for y ∈ Y ∪{>}.
Let X1 be a linearly ordered, discretely embedded3, prime4 and cancellative subalgebra of X5, and
1Other terminologies for FLe-algebras are: pointed commutative residuated lattices or pointed commutative residuated

lattice-ordered monoids.
2That is, there exists a binary operation →∗◦ such that x ∗◦ y ≤ z if and only if x→∗◦ z ≥ y; this equivalence is called

residuation condition or adjointness condition, (∗◦,→∗◦) is called an adjoint pair. Equivalently, for any x, z, the set {v | x∗◦v ≤ z}
has its greatest element, and x→∗◦ z is defined as this element: x→∗◦ z := max{v | x ∗◦ v ≤ z}.

3We mean that for x ∈ X1, it holds true that x /∈ {x↑, x↓} ⊂ X1 ( ↓ and ↑ are computed in X).
4We mean that (X \X1) ∗ (X \X1) ⊆ X \X1 holds.
5Equivalently, let X1 = gr(X), which is the subalgebra of X over {x ∈ X | x has inverse} and called the group part of X,

provided that gr(X) is linearly ordered and discretely embedded into X.
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let X2 ≤ X1. We define X
Γ(X2,Y)

Γ(X1,>)
=
(
X

Γ(X2,Y )

Γ(X1,>)
,≤, �,→�, (tX , tY ), (fX , fY )

)
, where

X
Γ(X2,Y )

Γ(X1,>)
= (X1 × {>}) ∪ (X2 × Y ) ∪ ((X \X1)× {>})

≤ is the restriction of the lexicographical order of ≤X and ≤Y ∪{>} to XΓ(X2,Y )

Γ(X1,>)
, � is defined coordi-

natewise, and the operations ′
�

and→� are given by

(x1, y1)→�(x2, y2) =
(

(x1, y1) � (x2, y2)
′�
)′�

and (x, y)′ =





(x′
∗
,>) if x 6∈ X1 and y = >

(x′
∗
, y′) if x ∈ X1 and y ∈ Y

((x′
∗

)↓,>) if x ∈ X1 and y = >
.

Call X
Γ(X2,Y)

Γ(X1,>)
the (type IV) partial-lexicographic product of X,X1, X2, and Y .

In particular, if X1 = X2 then call X
Γ(X1,Y)

Γ(X1,>)
the (type II) partial-lexicographic product of X,X1, and

Y , and denote it by XΓ(X1,Y>).

Lemma 1. Adopt the notation of Definition 1. Then X
Γ(X2,Y)

Γ(X1,>⊥)
and X

Γ(X2,Y)

Γ(X1,>)
are involutive FLe-

algebras with the same rank as that of Y.6 X
Γ(X2,Y)

Γ(X1,>⊥)
≤ XΓ(X1,Y>⊥) and X

Γ(X2,Y)

Γ(X1,>)
≤ XΓ(X1,Y>)

hold. In particular, if Y is group-like then so are X
Γ(X2,Y)

Γ(X1,>⊥)
and X

Γ(X2,Y)

Γ(X1,>)
.

Theorem 1. For a group-like FLe-algebra (X,∧,∨, ∗◦,→∗◦, t, f), (X,∧,∨, ∗◦, t) is a lattice-ordered
abelian group if and only if ∗◦ is cancellative.

Theorem 2. (Group Representation) If X is a group-like FLe-chain, which has only n ∈ N, n ≥ 1
idempotents in its positive cone then there exist linearly ordered abelian groups Gi (i ∈ {1, 2, . . . , n}),
H1,2 ≤ H1,1 ≤ G1, Hi,2 ≤ Hi,1 ≤ Γ(Hi−1,2,Gi) (i ∈ {2, . . . , n − 1}), and a binary sequence ι ∈
{>⊥,>}{2,...,n} such that X ' Xn, where X1 := G1 and Xi := Xi−1

Γ(Hi−1,2,Gi)

Γ(Hi−1,1,ιi )
(i ∈ {2, . . . , n}).

7

Theorem 3. The logic IULfp enjoys finite strong standard completeness.

Sketch of the proof. Since IULfp-chains (that is, non-trivial bounded group-like FLe-chains) consti-
tute an algebraic semantics of IULfp, we shall prove that any finitely generated IULfp-chain embeds
into an IULfp-chain over [0, 1]. Thus we prove that any IULfp formula which is falsified in a linearly
ordered model of finitely many IULfp formulas (which is always a finitely generated IULfp-chain) can
also be falsified in a standard group-like FLe-algebra, that is, in one over [0, 1]. To this end, let Y1 be a
non-trivial finitely generated bounded group-like FLe-chain, and let Y be the subalgebra of Y1 over its
universe deprived its top and bottom elements. Then Y is a finitely generated (not necessarily bounded)
group-like FLe-chain. We can prove that any finitely generated group-like FLe-chain has only a finite
number of idempotents, thus Y has finitely many (n ≥ 1) idempotents in its positive cone. Hence it
has a type III-IV group representation by Theorem 2. Our plan is to embed Y, guided by this group
representation, into a group-like FLe-chain X∗n over a universe which is order isomorphic to R. Then,
using the order isomorphism together with an order isomorphism between R and ]0, 1[, we can carry
over the structure of X∗n into ]0, 1[, and finally we can add a top and a bottom element (as in item 1 of
Definition 1) to get a group-like FLe-chain over [0, 1], in which Y1 embeds.

6The rank of an involutive FLe-algebra is positive if t > f , negative if t < f , and 0 if t = f .
7In the spirit of Theorem 1 we identify linearly ordered abelian groups by cancellative, group-like FLe-chains here.
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To this end, let a group representation of Y be given, that is, Gi (i ∈ {1, 2, . . . , n}) linearly or-
dered abelian groups, H1,2 ≤ H1,1 ≤ G1 and Hi,2 ≤ Hi,1 ≤ Γ(Hi−1,2,Gi) (2 ≤ i ≤ n), and
ι ∈ {>⊥,>}{2,...,n} such that Y ' Yn, where Y1 = G1 and Yi = Yi−1

Γ(Hi−1,2,Gi)

Γ(Hi−1,1,ιi )
(2 ≤ i ≤ n).

It can be shown that for i ∈ {1, . . . , n}, qua group-like FLe-chains,

Gi '
ki⊕

i=1

Z

holds for some ki ∈ N, where for ki = 0 we mean that Gi is the one-element group. We define two
series of group-like FLe-chains as follows: For j ∈ N, j ≥ 1, let Z0 = Z1 := Z, Zj+1 := ZΓ(Z,Z>j ),
R0 = R1 := R, Rj+1 := RΓ(Z,R>⊥j ). Finally, for i ∈ {1, . . . , n} let

X∗i =





Rk1
if i = 1 and either ι2 = >⊥ or i = n

Zk1
if i = 1, ι2 = >

X∗i−1Γ(Hi−1,1,Rki
>⊥)

if 2 ≤ i ≤ n, ιi = >⊥, and either ιi+1 = >⊥ or i = n

X∗i−1Γ(Hi−1,1,Zki
>⊥)

if 2 ≤ i ≤ n− 1, ιi = >⊥, ιi+1 = >
X∗i−1Γ(gr(X∗i−1),Zki

>)
if 2 ≤ i ≤ n− 1, ιi = >, ιi+1 = >

X∗i−1Γ(gr(X∗i−1),Rki
>)

if 2 ≤ i ≤ n, ιi = > and either ιi+1 = >⊥ or i = n

.

It can be shown that Y embeds into X∗n, and that X∗n is order isomorphic to R.
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We define partially-ordered multi-type algebras and use them as algebraic seman-
tics for multi-type display calculi that have recently been developed for several logics,
including dynamic epistemic logic [7], linear logic[10], lattice logic [11], bilattice logic
[9] and semi-De Morgan logic [8].

Multi-type algebras, also called many-sorted or heterogeneous algebras [1] have been
studied in the setting of universal algebra and they have applications, e.g., as abstract
data types in computer science [2] and in algebraic logic [4].

A multi-type algebra is of the form A = ((Aτ )τ∈T ,F) where each f ∈ F is a
function f : Aτ1 × · · · × Aτn → Aτ for some τ1, . . . , τn, τ ∈ T . The set of types T and
the sequences τ1, . . . , τn, τ for each operation f ∈ F determine the signature Σ of the
algebra. A partially-ordered multi-type algebra (pom-algebra for short) replaces the
carrier sets Aτ by partially-ordered sets (Aτ ,≤τ ) and insists that the operations are
order-preserving or order-reversing in each argument. This is recorded in the signature
Σ by a sequence ε ∈ {1, ∂}n for each n-ary operation f such that Aεiτi = Aτi for εi = 1
if f is order-preserving in the ith coordinate, and Aεiτi = A∂τi , the dual poset, otherwise.
Pom-algebras are a generalization of partially ordered (unitype) algebras. Varieties
and quasivarieties of partially ordered algebras have been studied by Pigozzi in [12],
and these universal algebraic concepts extend smoothly to pom-algebras of a given
signature.

In the setting of this talk we mostly consider pom-algebras in which each carrier
set has lattice operations ∨τ ,∧τ defined on it. In this case ≤τ is assumed to be the
lattice order and such algebras are called lattice-ordered multi-type algebras, or `m-
algebras. An important insight of multi-type display calculi is that certain unitype
lattice-ordered algebras can be recast as `m-algebras where each of the carriers support
simpler algebraic structure. The decomposition of lattice-ordered unitype algebras into
simpler loosely connected components can lead to the definition of uniform decision
procedures, in the form of display calculi, for the equational theory or even the universal
theory of the original unityped algebras. In some cases the unitype algebras satisfy
identities that cannot be captured by display calculus rules, but for their pom-algebra
counterparts this difficulty is resolved since the carriers of each type satisfy simpler
identities.
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Examples and results

Every lattice decomposes as a pom-algebra of a join-semilattice and a (disjoint) meet-
semilattice, with the connection given by an inverse pair of order-isomorphisms. The
decision procedure given by the display calculus of this variety of pom-algebras is
Whitmann’s solution of the word problem for free lattices, originally due to Skolem
(see [3]).

A semi-De Morgan lattice (not necessarily distributive) decomposes as a lattice
and a De Morgan lattice, connected by two unary order-preserving maps as in [8].
The display calculus for semi-De Morgan lattices interleaves Whitmann’s solution for
lattices with a similar algorithm for De Morgan lattices.

A linear logic algebra with exponentials decomposes into a residuated lattice and a
Heyting algebra connected with two adjunctions. Again this leads to a display calculus
for linear logic.

The concept of residuated frame from [6] is extended to `m-algebras and provides
multi-type frame semantics for display calculi. This allows many of the techniques for
residuated frames to be applied in the more general setting of `m-algebras.

Display calculi use sequents of the form s ≤τ t as ingredients for the rules of the
calculus, with both terms s, t having the same result type τ . However if t = f(t1, . . . , tn)

one can also consider a new sequent symbol s ≤fτ (t1, . . . , tn). In this case ≤fτ is a
relation from Aτ to Aε1τ1 × · · · × Aεnτn . Similarly the top-level operation symbol of the
left-hand term of a sequent can be used to define a new sequent symbol. From this point
of view sequent separator symbols are morphisms in the category of posets, similar to
the adjunctions that map between carrier posets in pom-algebras.

For posets P = (P,≤P) and Q = (Q,≤Q) a binary relation R ⊆ P × Q is a weak-
ening relation if ≤P ◦ R ◦ ≤Q ⊆ R. The class of posets with with weakening relations
as morphisms forms a category Pos that contains the category Pos of posets with
order-preserving maps. We characterize the display calculus morphisms as weakening
relations in the category Pos.
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Ioana Leuştean and Natalia Moangă
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Abstract

In [3], we defined a many-sorted polyadic modal logic together with its corresponding al-
gebraic theory. The idea is not new: in [7, 8] two-sorted systems are analyzed and we used
them as references for our approach, while in [1, 5] a general theory is developed by using a
coalgebraic approach. However, to our knowledge, the general framework presented in this
paper is new. In [2] a general many-sorted approach is developed, but the deductive system is
different from ours. While the transition from the mono-sorted logic to a many-sorted one is a
smooth process, we see our system as a step towards deepening the connection between modal
logic and program verification, since our system can be seen as the propositional fragment of
Matching logic, a first-order logic for specifying and reasoning about programs.

We present our system and its connections with logics used in program verification.
Our language is determined by a fixed, but arbitrary, many-sorted signature (S,Σ) and

a set of many-sorted propositional variables P = {Ps}s∈S such that Ps 6= ∅ for any s ∈ S
and Ps1 ∩ Ps2 = ∅ for any s1 6= s2 in S. For any n ∈ N and s, s1, . . . , sn ∈ S we denote
Σs1...sn,s = {σ ∈ Σ | σ : s1 . . . sn → s}.

The transition from a mono-sorted to a many-sorted setting is a smooth process and we
follow closely the developments from [4].

The set of formulas of MLS is an S-indexed family FormS = {Forms}s∈S inductively
defined as:

φs ::= p | ¬φs |φ1s ∨ φ2s |σ(φ1s1 , . . . , φnsn)

where s ∈ S, p ∈ Ps and σ ∈ Σs1...sn,s
We use the classical definitions of the derived logical connectors. For any σ ∈ Σs1...sn,s the

dual operation is σ2(φ1, . . . , φn) := ¬σ(¬φ1, . . . ,¬φn).
In order to define the semantics we introduce the (S,Σ)-frames and the (S,Σ)-models. An

(S,Σ)-frame is a tuple F = (W,R) such that:

• W = {Ws}s∈S is an S-sorted set of worlds and Ws 6= ∅ for any s ∈ S,

• R = {Rσ}σ∈Σ such that Rσ ⊆Ws ×Ws1 × . . .×Wsn for any σ ∈ Σs1...sn,s.

If F is an (S,Σ)-frame, then an (S,Σ)-model based on F is a pair M = (F , ρ) where
ρ : P → P(W) is an S-sorted valuation function such that ρs : Ps → P(Ws) for any s ∈ S.
The modelM = (F , ρ) will be simply denoted asM = (W,R, ρ). Following [4], if C is a set of
frames then we say that a model M is from C if it is based on a frame from C.

Next we introduce a many-sorted satisfaction relation. If M = (W,R, ρ) is an (S,Σ)-

model, s ∈ S, w ∈Ws and φ ∈ Forms, then the many-sorted satisfaction relation M, w |s= φ is
inductively defined as:

• M, w |s= p iff w ∈ ρs(p)
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• M, w |s= ¬ψ iff M, w 6|s= ψ

• M, w |s= ψ1 ∨ ψ2 iff M, w |s= ψ1 or M, w |s= ψ2

• if σ ∈ Σs1...sn,s, thenM, w |s= σ(φ1, . . . , φn) iff there exists (w1, . . . , wn) ∈Ws1×· · ·×Wsn

such that Rσww1 . . . wn and M, wi |si= φi for any i ∈ [n].

Consequently, we define our logic. Let K(S,Σ) = {Ks}s∈S be the least S-sorted set of
formulas with the following properties:

(a0) for any s ∈ S, if α ∈ Forms is a theorem in classical logic, then α ∈ Ks,

(a1) the following formulas are in Ks

(Ki
σ) σ2(ψ1, . . . , φ→ χ, . . . , ψn)→ (σ2(ψ1, . . . , φ, . . . , ψn)→ σ2(ψ1, . . . , χ, . . . , ψn))

(Dualσ) σ(ψ1, . . . , ψn)↔ ¬σ2(¬ψ1, . . . ,¬ψn)

for any n ≥ 1, i ∈ [n], σ ∈ Σs1···sn,s, ψs1 ∈ Forms1 , . . ., ψsn ∈ Formsn and φ, χ ∈ Formsi .

It is straightforward that K(S,Σ) is a generalization of the modal system K (see [4] for the
mono-sorted version). If Λ ⊆ FormS is an S-sorted set of formulas, then the normal modal
logic defined by Λ is KΛ = {KΛs}s∈S where

KΛs := Ks ∪ {λ′ ∈ Forms | λ′ is obtained by uniform substitution
applied to a formula λ ∈ Λs}

Next, we assume Λ ⊆ Forms is an S-sorted set of formulas and we investigate the normal
modal logic KΛ. Note that, in our approach, a logic is defined by its axioms.

The deduction rules are Modus Ponens and

Universal Generalization:
φ

σ2(φ1, .., φ, ..φn)

The distinction between local and global deduction from the mono-sorted setting is deepened
in our version: locally, the conclusion and the hypotheses have the same sort, while globally,
the set of hypotheses is a many-sorted set.

Definition 1. Assume that n ≥ 1, s1, . . . , sn ∈ S and φi ∈ Formsi for any i ∈ [n]. The
sequence φ1, . . . , φn is a KΛ-proof for φn if, for any i ∈ [n], ϕi is in KΛsi or ϕi is inferred from
ϕ1, . . . , ϕi−1 using modus ponens and universal generalization. If φ has a proof in KΛ, then we
say that φ is a theorem and we write | s

KΛ
φ where s is the sort of φ.

If s ∈ S, Φs ⊆ Forms and φ ∈ Forms, then we say that φ is locally provable from Φs in
KΛ and we write Φs | s KΛ

φ, if there are φ1, . . . , φn ∈ Φs such that | s
KΛ

(φ1 ∧ . . . ∧ φn)→ φ.
If Γ ⊆ Form is an S-sorted set of formulas, we say that φ is a globally provable from Γ, and
we write Γ |

KΛ
φ, if there exists a sequence φ1, . . . , φn such that φn = φ and, for any i ∈ [n],

φi ∈ Formsi is an axiom or φi ∈ Γsi or it is inferred from φ1, . . . , φi−1 using modus ponens and
universal generalization.

We further present the local deduction.

Theorem 2. (Local deduction theorem for KΛ) For any s ∈ S and Φs ∪ {ϕ,ψ} ⊆ Forms:

Φs | s KΛ
ϕ→ ψ iff Φs ∪ {ϕ}s | s KΛ

ψ.

2
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Following closely the approach from [4], in order to study the canonical models and to
prove the completeness theorem, we need to study the consistent sets. For any s ∈ S, we
say that the set Φs ⊆ Forms is (locally) KΛ-inconsistent if Φs | s KΛ

⊥s and it is (locally)
KΛ-consistent, otherwise. Using the (locally) maximal consistent sets, we define the canonical
model MKΛ = (WKΛ, {RKΛ

σ }σ∈Σ, V
KΛ) as follows:

(1) for any s ∈ S, WKΛ
s = {Φ ⊆ Forms | Φ is maximal KΛ-consistent},

(2) for any σ ∈ Σs1...sn,s, w ∈WKΛ
s , u1 ∈WKΛ

s1 , . . . , un ∈WKΛ
sn we define

RKΛ
σ wu1 . . . un iff (ψ1, . . . , ψn) ∈ u1 × · · · × un implies σ(ψ1, . . . , ψn) ∈ w

(3) V KΛ = {V KΛ
s }s∈S is the valuation defined by

V KΛ
s (p) = {w ∈WKΛ

s |p ∈ w} for any s ∈ S and p ∈ Ps.

Our completeness results generalize the ones from [4].

Theorem 3. For any many-sorted signature (S,Σ) the normal modal logic K(S,Σ) is strongly
complete with respect to the class of all (S,Σ)-frames. For any Λ ⊆ Form the normal modal
logic KΛ is complete with respect to the canonical model.

We also investigate the global deduction: we relate the local and the global deduction, we
prove a version of the deduction theorem in the global setting, we define the globally consistent
sets and we prove that any globally consistent set has a model.

In order to develop an algebraic approach, we generalize the boolean algebras with operators
as follows.

Definition 4. An (S,Σ)-boolean algebra with operators ((S,Σ)-BAO) is a structure

A = ({As}s∈S , {fσ}σ∈Σ)

where As = (As,∨s,¬s, 0s) is a boolean algebra for any sort s ∈ S and, for any σ ∈ Σs1...sn,s,
fσ : As1 × . . .×Asn → As satisfies the following properties:

(N) fσ(a1, . . . , an) = 0s whenever ai = 0si for some i ∈ [n],
(A) fσ(a1, . . . , ai ∨si a′i, . . . , an) = fσ(a1, . . . , ai, . . . , an) ∨s fσ(a1, . . . , a

′
i, . . . , an)

for any i ∈ [n].

We mention that similar structures were defined in [1] , but in that case the operators are
unary operations while, in our setting, they have arbitrary arities. We prove the analogue of the
Jónsson-Tarski theorem as well as the algebraic completeness for our systems of many-sorted
modal logic.

Theorem 5. (Algebraic completeness for KΛ) If s ∈ S and φ ∈ Forms then | s
KΛ
φ if and

only if es(φ) = 1s in As for any (S,Σ)-BAO A that is a model of KΛ and any assignment e in
A.

Finally, we relate our system with matching logic [6], a many-sorted first-order logic for
program specification and verification. The completeness theorem for matching logic is proved
using a interpretation in the first-order logic with equality. The starting point of our investi-
gation was the representation of the (mono-sorted) polyadic modal logic as a particular system
of matching logic in [6, Section 8]. Our initial goals were: to understand the propositional part
of matching logic, to give a self-contained proof of the completeness theorem, to identify the
algebraic theory and to investigate the relation with modal logic. The present system is an
initial step in this direction.
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Let (S,Σ) be a many-sorted signature. A matching logic (S,Σ)-model is

M = ({Ms}s∈S , {σM}σ∈Σ)

where σM : Ms1×. . .×Msn → P(Ms) for any σ ∈ Σs1...sn,s. For σ ∈ Σs1...sn,s we define Rσ ⊆
Ms1 × · · · ×Msn by Rσww1 . . . wn iff w ∈ σM (w1, . . . , wn). Hence, M = ({Ms}s∈S , {Rσ}σ∈Σ)
is an (S,Σ)-frame so we consider M = ({P(Ms)}s∈S , {mσ}σ∈Σ) the full complex algebra deter-
mined by M.

With respect to the relation between matching logic and our general many-sorted polyadic
modal logic, we can state the following:

• any matching logic model can be associated with an (S,Σ)-frame and vice versa,

• the algebraic theory of matching logic is the theory of (S,Σ)-boolean algebras with oper-
ators,

• the system K(S,Σ) can be seen as the propositional counterpart of matching logic.

Even if Matching logic was the starting point of our research, one of the main issues was to
connect our logic with already existing systems of many-sorted modal logic. In [8] the author
defines a sound and complete two-sorted modal logic for projective planes. This system is a
particular case of our general framework. We refer to [3] for more examples of many-sorted
developments of modal logic that can be connected with our approach.

References

[1] B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Theoretical Informatics
and Applications Theoret. Informatics Appl. 35 (2001), pp. 31-59.
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We provide some sufficient conditions for a variety of residuated structures to possess the
epimorphism surjectivity property. Our main result concerns square-increasing commutative
residuated lattices (SRLs), possibly with involution (SIRLs).

An SRL A = 〈A;∧,∨, ·,→, e〉 comprises a lattice 〈A;∧,∨〉, a commutative monoid 〈A; ·, e〉
that is square-increasing (x ≤ x ·x), and a binary operation→ satisfying the law of residuation

x · y ≤ z iff y ≤ x→ z.

We may enrich the language of SRLs with an involution ¬ that satisfies

x = ¬¬x and x→ ¬y = y → ¬x,

thus obtaining SIRLs.
Our interest in residuated structures stems from the fact that they algebraize substructural

logics [2]. In the framework of [2], the variety of all SRLs algebraizes the positive full Lambek
calculus with the structural rules of exchange and contraction (but not weakening). The logical
counterpart of the variety of SIRLs is sometimes denoted as LRt by relevance logicians (to
indicate that the algebras are lattices, but need not be distributive). Equivalently, LRt adds
the contraction rule to classical linear logic (without exponentials and bounds).

One obtains more familiar algebras by imposing additional demands on S[I]RLs. For exam-
ple, distributive SIRLs are called De Morgan monoids, and they algebraize the relevance logic
Rt. Brouwerian algebras are integral SRLs (meaning x ≤ e), in which case · coincides with ∧.
They are the negation-less subreducts of Heyting algebras; the latter algebraize intuitionistic
propositional logic. Integral SIRLs are Boolean algebras.

Let K be a variety of algebras. A homomorphism f : A → B, with A,B ∈ K, is called a
K-epimorphism if, whenever C ∈ K and g and h are homomorphisms from B to C such that
g ◦ f = h ◦ f , then g = h. All surjective homomorphisms in K are K-epimorphisms. We say K
has the epimorphism surjectivity (ES) property if the converse holds.
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When a variety K algebraizes a logic ` , then K has the ES property if and only if ` has
the infinite (deductive) Beth (definability) property [3], i.e., whenever a set Z of variables is
defined implicitly in terms of a disjoint set X of variables by means of some set Γ of formal
assertions about X ∪ Z, then Γ also defines Z explicitly in terms of X. The same demand on
`, restricted to finite sets Z, is called the finite Beth property, and it amounts to the so-called
weak ES property for K, i.e., every almost-onto K-epimorphism is surjective. (A homomorphism
h : A→ B is almost-onto if B is generated by h[A] ∪ {b} for some b ∈ B.)

Every variety of Brouwerian or Heyting algebras has the weak ES property [4]. In the
presence of the weak ES property, the amalgamation property implies the ES property, as is
well known. The amalgamation and ES properties are independent in the present context,
however, and many varieties of (non-integral) S[I]RLs lacking the weak ES property have been
identified (beginning with [8]).

Given an S[I]RL A, its negative cone A− = {a ∈ A : a ≤ e}, can be turned into a Brouwerian
algebra A− = 〈A−;∧,∨, e,→−〉, by restricting the operations ∧,∨ to A− and defining

a→− b = (a→ b) ∧ e, for a, b ∈ A−.

For any Brouwerian algebra B, let Pr(B) be the set of non-empty prime (lattice) filters F of
B, including B itself. We define the depth of F in Pr(B) to be the greatest n ∈ ω (if it exists)
such that there is a chain in Pr(B) of the form F = F0 ( F1 ( · · · ( Fn = B. If no such n
exists, we say F has depth ∞ in Pr(B). We define depth(B) = sup{depth(F ) : F ∈ Pr(B)}. If
A is an S[I]RL and K is a variety of S[I]RLs, we define

depth(A) = depth(A−) and depth(K) = sup{depth(A) : A ∈ K}.

If a variety of S[I]RLs is finitely generated, then it has finite depth (but not conversely). Our
main result is as follows.

Theorem 1. Let K be a variety of S[I]RLs of finite depth such that each finitely subdirectly
irreducible member of K is generated (as an algebra) by its negative cone. Then K has the ES
property.

The argument works also for S[I]RLs having distinguished least elements. Consequently,
Theorem 1 generalizes the recent discovery in [1] that every variety of Brouwerian or Heyting
algebras of finite depth has the ES property.

We can provide examples which show that neither of the two hypotheses in Theorem 1 can
be dropped.

A Sugihara monoid is a De Morgan monoid that is idempotent (i.e., x2 = x). It has
recently been shown that every variety of Sugihara monoids has the ES property, and that
the same applies to the involution-less subreducts of Sugihara monoids [1]. For the finitely
generated varieties of this kind, the ES property could alternatively be deduced immediately
from Theorem 1.

The (non-idempotent) De Morgan monoid on the chain ¬((¬e)2) < e < ¬e < (¬e)2, denoted
by C4, generates one of just four minimal varieties of De Morgan monoids [5], and it is the
only 0–generated algebra onto which finitely subdirectly irreducible De Morgan monoids may
be mapped by non-injective homomorphisms [7]. There is a largest variety U of De Morgan
monoids consisting of homomorphic preimages of C4, and in the subvariety lattice of U, the
variety generated by C4 has just ten covers [6]. All ten of these varieties satisfy the hypotheses
of Theorem 1 and therefore have the ES property.
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1 Introduction

A class K of similar algebras is called a prevariety if it is closed under subalgebras, direct
products and isomorphic images. This amounts to the demand that K be axiomatized by some
class Ξ of implications &{αi = βi : i ∈ I} =⇒ α = β (I a possibly infinite set) [2]. The claim
that we cannot always find a set to play the role of Ξ is consistent with the set theory NBG
(including choice). Its negation (i.e., the claim that sets suffice) is consistent with NBG if huge
cardinals exist. These facts were established by Adámek [1].

‘Bridge theorems’ of abstract algebraic logic [5, 7, 8, 9] have the form

` has logical property P iff K has algebraic property Q,

where ` is an algebraizable logic and K = Alg(`) is its algebraic counterpart—in which case
K is a prevariety, at least. Examples include connections between Beth definability properties
and the surjectivity of epimorphisms. Beth properties ask that, whenever a set Γ of formal
assertions about the variables ~x, ~z defines ~z implicitly in terms of ~x, then it does so explicitly
as well.

Blok and Hoogland [4] showed that the straightforward ES property—i.e., the demand that
all epimorphisms in K be surjective—corresponds to an infinite version of the Beth property,
where no cardinal is assumed to bound the lengths of the sequences ~x, ~z, nor the size of Γ.
When testing for implicit definability, we need to substitute expressions for the variables ~z, and
this may introduce fresh variables. For such reasons, in the general bridge theorem connecting
the ES and infinite Beth properties, the logic ` is formulated not as a single (substitution-
invariant) deductive system but as a family of deductive systems, indexed by the subsets of a
proper class of variables, with a correspondingly wider substitution-invariance demand.

This is unavoidable, in view of Adámek’s findings, but the immersion of proper classes in
the syntax of formal systems jars psychologically with the spirit of formalization. Moreover,
many familiar algebraizable logics are finitary, with only countably many connectives, and are
formalized using a countable set of variables—as nothing more is required for their axiomati-
zation. When working with such logics, one would much prefer a suitably localized version of
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the infinite Beth property that also presupposes only a set of variables, but is still provably
equivalent to the unrestricted ES property for the algebraic counterpart. From such a result,
one might expect a formally stronger conclusion when inferring definability results from an
analysis of epimorphisms.

It seems, however, that the published literature of abstract algebraic logic contains no such
bridge theorem, and our aim here is to fill this gap.

Our results cater for all logics that are equivalential in the sense of [7], so they encompass
all algebraizable logics. Each [finitely] equivalential logic has a [finite] family ∆(x, y) of binary
terms that simulates a bi-conditional connective, to the extent that the Lindenbaum-Tarski
construction may be carried out in a recognizable manner. (The family is essentially unique,
so we abbreviate ∆(x, y) as x↔ y below.) Accordingly, the natural semantics for an arbitrary
equivalential logic ` is its class Mod∗(`) of reduced matrix models, which coincides essentially
with Alg(`) when ` is algebraizable.

As matrices are algebras with a distinguished unary relation, our analysis of epimorphisms
will attend not only to pure algebras, but also to first order structures, where atomic formu-
las take over the role of equations. (Homomorphisms between similar structures preserve all
indicated relations, but are not assumed to reflect them.)

2 Epimorphisms

Consider a class K of similar structures, and a K–morphism h, i.e., a homomorphism between
members of K. Recall that h is called a (K–) epimorphism provided that, for any two homo-
morphisms f, g from the co-domain of h to a single member of K, if f ◦h = g ◦h, then f = g. A
substructure D of a structure B ∈ K is said to be (K–) epic in B if each homomorphism from
B to a member of K is determined by its restriction to D. (This amounts to the demand that
the inclusion map D −→ B be an epimorphism, provided that K is closed under substructures.)
Of course, a K–morphism h : A −→ B is an epimorphism iff h[A] is an epic substructure of B,
so K has the (unrestricted) ES property iff each of its members has no proper epic substructure.

Already for algebras, the connection between ‘implicitly defined’ constructs and epimor-
phisms was remarked on in the literature long ago (e.g., see Freyd [10, p. 93] and Isbell [11]),
but it is characterized in a syntactically sharper manner in Theorem 3 of Campercholi’s recent
paper [6]. There, however, it is confined to classes closed under ultraproducts. We extend it to
arbitrary classes below (where, as usual, structure A has universe A, etc.)

Theorem 1. Let K be any class of similar structures, A a substructure of B ∈ K and Z ⊆ B\A,
where A ∪ Z generates (the algebra reduct of) B.

Then A is K–epic in B iff, for each b ∈ Z, there is a set Σ = Σ(~x, ~z, v) of atomic formulas
such that B |= Σ(~a,~c, b) for suitable ~a ∈ A and ~c ∈ B, and

K |= &[Σ(~x, ~z, v1) ∪ Σ(~x, ~y, v2)] =⇒ v1 = v2.

In this case, for each b ∈ Z, we can arrange that |~z| ≤ |Z| and ~c ∈ Z.

When K is closed under ultraproducts (in particular, when K is a quasivariety), then each
of the sets Σ in Theorem 1 can be chosen finite.

In a structure B, a substructure A is said to be almost total if B is generated by A∪Z for
some finite Z ⊆ B. We say that K has the weak ES property if no B ∈ K has a proper K–epic
almost total substructure. The meaning of this demand would not change if, in the definition
of ‘almost total’, we required |Z| = 1 (see [4, p. 76]).

The aforementioned findings of Adámek justify our interest in the following prevarieties.
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Definition 2. For each infinite cardinal m, an m–generalized quasivariety is a class of structures
axiomatized by implications, each of which is formulated in at most m variables.

Theorem 3. For m > ℵ0, let K be an m–generalized quasivariety whose signature has cardi-
nality s. Then K has the ES property iff no structure in K of cardinality at most m + s has a
proper K–epic substructure.

The proof uses Theorem 1. As every quasivariety is an ℵ0–generalized quasivariety, we infer:

Corollary 4. Let K be a quasivariety with a countable signature. Then K has the ES property
if and only if no countable member of K has a proper K–epic substructure.

For varieties K of algebras, Corollary 4 follows from a finding of Isbell [11, Cor. 1.3], whose
own proof relies, however, on closure under homomorphic images.

An ℵ0–generalized quasivariety need not be a quasivariety: see [1, p. 45]. Nevertheless, in
Corollary 4, we cannot strengthen ‘countable’ to ‘finitely generated’. Indeed, a locally finite
variety K of Brouwerian algebras and a proper K–epic subalgebra of a denumerable member of
K are exhibited in [3, Sec. 6], but no finitely generated (i.e., finite) member of K has a proper
K–epic subalgebra, because every variety of Brouwerian algebras has the weak ES property [12].

On the other hand, finitely generated structures do suffice, in quasivarieties, to test the weak
ES property itself (again, owing to Theorem 1):

Theorem 5. A quasivariety K has the weak ES property iff no finitely generated member of K
has a proper K–epic substructure.

3 Bridge Theorems

Below, the class of all subsets of a class C is denoted by P(C). Given an algebraic signature L
and a set X of variables, the absolutely free algebra of L–terms over X is denoted by T (X).

Definition 6. ([4]) An equivalential logic ` over a proper class Var of variables is said to have
the (deductive) infinite Beth (definability) property if the following holds for all disjoint subsets
X,Z of Var , with T (X) 6= ∅, and all Γ ⊆ T (X ∪ Z): if,

for each z ∈ Z and each homomorphism h : T (X ∪ Z) −→ T (Y ), with Y ∈ P(Var),
such that h(x) = x for all x ∈ X, we have Γ ∪ h[Γ] ` z ↔ h(z),

then, for each z ∈ Z, there exists ϕz ∈ T (X) such that Γ ` z ↔ ϕz.

Theorem 7. ([4, Thm. 3.12]) Let ` be an equivalential logic over a proper class. Then ` has
the infinite Beth property iff, in the prevariety Mod∗(`), all epimorphisms are surjective.

We have not found the following definition (and theorem) in the published literature.

Definition 8. An equivalential logic ` over an infinite set V of variables will be said to have the
(V –) localized infinite Beth property provided that the following is true for all disjoint subsets
X,Z of V and all Γ ⊆ T (X ∪ Z), such that T (X) 6= ∅ and |V \(X ∪ Z)| ≥ |Z|+ ℵ0 : if,

for each z ∈ Z and each endomorphism h of T (V ), such that h(x) = x for all x ∈ X,
we have Γ ∪ h[Γ] ` z ↔ h(z),

then, for each z ∈ Z, there exists ϕz ∈ T (X) such that Γ ` z ↔ ϕz.

3
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Theorem 9. Let ` be an equivalential logic over an infinite set V , where ` has at most |V |
connectives and has the localized infinite Beth property. Then no member of Mod∗(`) with at
most |V | elements has a proper Mod∗(`)–epic submatrix.

This, with Theorems 3 and 7, facilitates the proof of a bridge theorem in which the need to
consider proper classes is eliminated for symbolically limited logics:

Theorem 10. Let ` be an equivalential [resp. algebraizable] logic over an infinite set V ,
where s is the cardinality of the signature. Assume that ` has an axiomatization that uses at
most m variables, where m + s ≤ |V |. Then ` has the localized infinite Beth property iff all
epimorphisms in Mod∗(`) [resp. Alg(`)] are surjective.

Nearly every ‘familiar’ logic ` has countable type and either is algebraized by a quasivariety
or is finitary and equivalential. For such a logic, the set V can be chosen denumerable and the
assumption m+ s ≤ |V | in Theorem 10 becomes redundant, but the need to ‘localize’ does not.

The finite Beth property is defined like the infinite one, except that the set Z in its definition
is required to be finite. An equivalential logic ` over a proper class has this property iff Mod∗(`)
has the weak ES property [4, Thm. 3.14, Cor. 3.15].

Let us also define the (V –) localized finite Beth property like its infinite analogue, but
stipulating that Z be finite and substituting ‘V \X is infinite’ for ‘|V \(X ∪ Z)| ≥ |Z|+ ℵ0’.

Theorem 10 has analogues for these properties. We state only one, wherein the cardinality
of the signature plays no role.

Theorem 11. Let ` be a logic over a denumerable set V of variables, where ` is algebraized
by a quasivariety [resp. is finitary and finitely equivalential ]. Then ` has the localized finite
Beth property iff Alg(`) [resp. Mod∗(`)] has the weak ES property.

Observe that, when applying Theorem 11, we need only test the surjectivity of epimorphisms
into finitely generated targets, because of Theorem 5. The equivalent conditions of Theorem 11
obtain for all super-intuitionistic logics (and the corresponding varieties of Heyting algebras).
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In this talk I report on ongoing joint research with Matthew Spinks and Thiago Nascimento;
our main focus is an investigation into the meaning and consequences of what we call the Nelson
identity in the context of residuated lattices.

Nelson’s constructive logic with strong negation N3 [7, 12, 13, 16] can be viewed as either
a conservative expansion of the negation-free fragment of intuitionistic logic by a new unary
logical connective of strong negation or (to within definitional equivalence) as the axiomatic
extension NInFLew of the involutive full Lambek calculus with exchange and weakening by
the Nelson axiom:

` ((x⇒ (x⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)))⇒ (x⇒ y). (Nelson`)

The algebraic counterpart of NInFLew is the recently introduced class NRL of Nelson residu-
ated lattices, which is term equivalent to the variety of Nelson algebras, the traditional algebraic
counterpart of N3. Members of NRL are compatibly involutive commutative integral residuated
lattices satisfying the algebraic counterpart of the axiom (Nelson`):

((x⇒ (x⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)))⇒ (x⇒ y) ≈ 1. (1)

The starting point for the present contribution is our previous work devoted to a weaker
logic of strong negation introduced by Nelson in [8] under the name of S. We established in [5, 6]
that S is the axiomatic extension of the full Lambek calculus with exchange and weakening by
the axioms of double negation and (3, 2)-contraction, viz.

` ∼∼x⇒ x

` (x⇒ (x⇒ (x⇒ y)))⇒ (x⇒ (x⇒ y)).

In view of results due to Spinks and Veroff [14, 15] and Busaniche and Cignoli [3], Nelson’s
logic N3 is precisely the extension of S by the axiom (Nelson`).

We showed in [5, 6] that S is algebraisable and we characterised its algebraic counterpart as
the variety of compatibly involutive 3-potent commutative integral residuated lattices (dubbed
for short as S-algebras). In consequence, the algebraic counterpart of N3 is, up to term equiv-
alence, precisely the subvariety of S-algebras that additionally satisfies the identity (1) above.
Busaniche and Cignoli [3, Remark 2.1] have observed that (1) is equivalent (over compatibly
involutive commutative integral residuated lattices) to the following

(x⇒ (x⇒ y)) ∧ (∼ y ⇒ (∼ y ⇒ ∼x)) ≈ x⇒ y (Nelson)

which we take as our official version of the Nelson identity.

The present contribution is the outgrowth of our interest in understanding the essential
difference between the logics S and N3 in a (universal) algebraic context; our main focus
shall thus be on the meaning and role of the Nelson identity in the context of compatibly
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involutive commutative integral residuated lattices. In this endeavour, we were naturally led
to formulate more abstract order-theoretic/algebraic properties which go hand in hand, in our
context, with the Nelson identity. We have thus introduced generalisations of the congruence
orderable algebras and the Fregean varieties of [4]. The main interest in our approach is, in our
opinion, the fact that it may open the way to further universal algebraic investigation beyond
the context of Nelson’s logics and even beyond residuated lattices.

Within the framework of compatibly involutive residuated lattices, it is natural to work with
two distinguished algebraic constants instead of just one; this led us to introduce the following
generalisations of the universal algebraic notions of congruence orderable and Fregean algebra.
Call an algebra A with residually distinct constants 0A and 1A

• (0,1)-congruence orderable if for all a, b ∈ A, the following congruence condition holds:

ΘA(0A, a) = ΘA(0A, b) and ΘA(1A, a) = ΘA(1A, b) implies a = b;

• (0,1)-Fregean if A is (0,1)-congruence orderable and the congruences on A are uniquely
determined by both their 0A- and 1A-equivalence classes simultaneously.

One of our main results is the following.

Theorem. For a compatibly involutive commutative integral bounded residuated lattice A,
the following are equivalent:

1. A is a Nelson residuated lattice.

2. A is (0,1)-congruence orderable.

3. A is (0,1)-Fregean.

As mentioned above, the property of being (0,1)-congruence orderable (or Fregean) is mean-
ingful not only in the context of residuated lattices but in principle for any class of algebras
having two distinguished constants. It is therefore possible as well as natural to ask questions
such as:

• Is the class of (0,1)-congruence orderable (or Fregean) bounded (but not necessarily
involutive) residuated lattices a variety? If so, what is an equational presentation for it?

• Is there a characterisation theorem for congruence permutable (0,1)-congruence orderable
varieties similar to the characterisation theorem for congruence permutable congruence
1-orderable varieties of Idziak et al. [4]?

Even more generally, one could replace the constants 0 and 1 in the definition of (0,1)-
congruence orderability with unary (not necessarily constant) terms s(x) and t(x) to investigate
(s, t)-congruence orderable algebras; in this context, a natural condition that may make the
study of (s, t)-congruence orderable algebras comparatively tractable would be to require s(x)
and t(x) to satisfy τ -normality in the sense of [2, Definition 5.1.2]. This would allow us to extend
our study, for instance, to the class of N4-lattices, the algebraic counterpart of paraconsistent
Nelson’s logic [1, 9, 10, 11], which do not have any term definable algebraic constants. We leave
these as suggestions for potentially interesting directions of future research.
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[4] P. M. Idziak, K. S lomczyńska, and A. Wroński. Fregean varieties. International Journal of Algebra
and Computation, 19:595–645, 2009.

[5] T. Nascimento, U. Rivieccio, J. Marcos, and M. Spinks. Algebraic semantics for nelson’s logic S.
Submitted, https://arxiv.org/abs/1803.10847.

[6] T. Nascimento, U. Rivieccio, J. Marcos, and M. Spinks. Nelson’s logic S. Submitted, https:

//arxiv.org/abs/1803.10851.

[7] D. Nelson. Constructible falsity. Journal of Symbolic Logic, 14:16–26, 1949.

[8] D. Nelson. Negation and separation of concepts in constructive systems. In A. Heyting, editor,
Constructivity in Mathematics, pages 208–225. North-Holland Publishing Company, Amsterdam,
1959.

[9] S. P. Odintsov. Algebraic semantics for paraconsistent Nelson’s logic. Journal of Logic and Com-
putation, pages 453–468, 2003.

[10] S. P. Odintsov. On the representation of N4-lattices. Studia Logica, 76:385–405, 2004.

[11] S. P. Odintsov. Constructive Negations and Paraconsistency, volume 26 of Trends in Logic. Studia
Logica Library. Springer, Berlin, 2008.

[12] H. Rasiowa. An Algebraic Approach to Non-Classical Logics, volume 78 of Studies in Logic and
the Foundations of Mathematics. North-Holland Publishing Company, Amsterdam, 1974.

[13] A. Sendlewski. Some investigations of varieties of N -lattices. Studia Logica, 43:257–280, 1984.

[14] M. Spinks and R. Veroff. Constructive logic with strong negation is a substructural logic. I. Studia
Logica, 88:325–348, 2008.

[15] M. Spinks and R. Veroff. Constructive logic with strong negation is a substructural logic. II. Studia
Logica, 89:401–425, 2008.

[16] D. Vakarelov. Notes on N -lattices and constructive logic with strong negation. Studia Logica,
36:109–125, 1977.

3

83



Modal logics for reasoning about weighted graphs

Igor Sedlár and Amanda Vidal Wandelmer

The Czech Academy of Sciences
Institute of Computer Science

Prague, Czech Republic
{sedlar,amanda}@cs.cas.cz

Summary. Frames for lattice-valued modal logics [3, 5, 4, 9] are directed weighted graphs
(with the given lattice of truth values seen as an algebra of weights), so it is natural to consider
these logics as formalisms for reasoning about weighted graphs; in a similar vein, versions of
modal logic based on classical logic have been used to express and reason about properties of
non-weighted graphs [2, 7].

In this position talk we examine existing many-valued modal logics as formalisms for rea-
soning about weighted graphs. In addition to presenting preliminary results, this examination
will lead us to propose a number of topics for future research in many-valued modal logic. In
the rest of the abstract, we give a more detailed overview of the contents of the talk.

Weighted graphs. Let A be a complete FLew algebra with bounds 0 and 1 (we use FLew

algebras for the sake of generality, although in most examples we will use linearly ordered
algebras over [0, 1]). An A-weighted graph is G = 〈V,E〉 where V is a non-empty set (of
vertices) and E is a function from V × V to A (the edge function). Intuitively, A is seen as
an algebra of weights with the fusion operation � representing addition of weights; 1 is the
minimal weight (“no weight”) and 0 is the maximal possible (“infinite”) weight. E(v, v′) is the
weight of the edge (v, v′)—informally, this can be seen as the “distance” between v and v′ or
as a representation of the cost of getting (directly) from v to v′. It might be a bit unintuitive
at first to interpret 1 and 0 as the minimal and maximal weight, respectively, but the following
picture might help. We may see “distances” or “costs” as something that reduces available
“resources” also expressed in terms of A—if a is the amount of available resources and b is a
weight of an edge between v and v′, then a� b is the amount of resources left after getting from
v to v′ using the given edge. In particular, if the an edge has no weight, i.e. it’s weight is 1, then
a � 1 = a; this means that using the edge does not reduce the amount of available resources.
Similarly, a� 0 = 0 so using an edge with “infinite” weight 0 does not leave any resources.

Modal languages. Let Lab be a set of labels. A labelled A-weighted graph is 〈G, L〉 where
L : V → P(Lab) is a labelling function assigning to each vertex a set of labels. Formulas of the
language L(Lab) are constructed from Lab (seen as propositional atoms) using the operators
>,⊥ (nullary), 3,2 (unary) and ∧,∨,→,� (binary). For each v ∈ V and L we define a function
vL from the formulas of L(Lab) to A as follows (sometimes denoted as v):

vL(>) = 1 and vL(⊥) = 0

vL(p) = 1 if p ∈ L(v) and vL(p) = 0 otherwise (for p ∈ Lab)

vL(ϕ ◦ ψ) = vL(ϕ) ◦ vL(ψ) for ◦ ∈ {∧,∨,�,→}

vL(3ϕ) =
∨

u∈V {E(v, u)� uL(ϕ)}

vL(2ϕ) =
∧

u∈V {E(v, u)→ uL(ϕ)}
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Examples of expressiveness. It is easy to see that v(3p) is the smallest distance from v
to a vertex labelled with p, if the underlying algebra of weights is linear. The reason is that
uL(p) ∈ {0, 1} and so E(v, u) � u(p) is either 0 (if u is not labelled by p) or E(v, u) (if u is
labelled by p). Hence, v(3p) is the supremum of the weights of edges connecting v with vertices
labelled by p. On the reading of 1 as the smallest possible distance, the supremum of weights
can be read as the infimum of distances; if the algebra is linearly ordered, then infimum is
minimum. (The interpretation of 3p in non-linear weight algebras is less straightforward; one
may see this as a reason to work with linear algebras only.)

Let us define 31ϕ := 3ϕ and 3k+1ϕ := 33kϕ for k ≥ 1. We can then interpret v(3kp) as
the weight of the “lightest” (“most feasible”, “cheapest”, “shortest”) k-member path to a vertex
labelled with p starting at v (a k-member path starting at v is a function from {0, 1, . . . , k} to
V where the value of 0 is v). As a special case, v(3k>) is the weight of the lightest k-member
path starting at v.

Similarly, v(3kp → 3mq) = 1 iff the lightest k-member path to (a vertex labelled by) p is
not cheaper than the lightest m-member path to q (as a result, 33p→ 3p allows us to define
a weak version of transitivity—the direct path from v to u is never more expensive than a path
via some w). Introducing constants (for elements in A) into the language allows us to have
formulas establishing that the cost of the most feasible k-member path to p is smaller than
(bigger than, equal to) a specific constant-denoted weight. For instance, v(ā → 3kp) = 1 iff
a ≤ v(3kp) so, in a sense, ā → 3kp “says” that the cost of the most feasible k-member path
to p is not bigger than a.

Axiomatization. By defining L to be the local consequence relation over labeled A-weighted
graphs in the standard manner, we obtain a logic that has a number of interesting properties (for
example, it is not structural, i.e. not closed under arbitrary substitutions). For the cases where
an axiomatization of the modal logic over Kripke models with valued accessibility relations is
known (e.g. [3],[4]), it is easy to provide an axiomatic system (not substitution invariant) for
L, simply combining classical propositional logic closed under substitution of only non-modal
formulas, and the usual axiomatization of the modal logic.

Extensions of the basic framework. As noted already in [2], versions of the basic modal
language fail to express most of the interesting graph properties. This is also the case in the
weighted setting. One extension to consider is a many-valued version of hybrid logic [1]. The
literature on these matters is scarce; [6] consider hybrid logics based on finite and infinite
standard Gödel algebras and [8] study hybrid logics over arbitrary finite Heyting algebras. One
issue raised by the present considerations is a generalization of these approaches to a setting of
arbitrary FLew algebras.

A hybrid language L(Lab,Nom) adds to L(Lab) a set Nom, disjoint from Lab, of expressions
called nominals. Formulas of the language are built from Lab and Nom as before with the
addition of unary operators @i for i ∈ Nom. The labelling function is now defined as L : V →
2Lab ×Nom such that L is injective on Nom (each vertex is labelled by precisely one nominal).
We denote as d(i) the unique vertex v such that i ∈ L(v). The definition of vL is extended by

vL(i) = 1 if v = d(i) and vL(i) = 0 otherwise (for all i ∈ Nom)

vL(@iϕ) = d(i)L(ϕ)

It can be shown that formulas of the hybrid language can define acyclic graphs (@i(3i→ ⊥)
if the underlying graph is transitive). In fact, the “combined weight” of each finite path
〈d(i1), . . . , d(in)〉 corresponds to the value of the formula @i13(i2 � 3(. . . in−1 � 3in) . . .).
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In addition, it can be shown that each finite weighted graph can be characterized, up to iso-
morphism, by a formula of a many-valued hybrid language with a finite number of constants.
A study of general many-valued hybrid logics (including axiomatization) is a topic of current
research.

There is a number of further extensions of the framework that offer expressive power useful
in the context of weighted graphs. For instance, extend the language by an unary operator σ
on nominals with the truth condition

vL(σ(i)) =
⊙

v∈V {E(d(i), v) | E(d(i), v) 6= 0}

In other words, σ(i) is the combined weight of the edges coming out of the vertex d(i) (in the
fashion of the well-established magic labelling [10] for weighted graphs). This operator does not
have a straightforward counterpart in the classical hybrid setting. The study of many-valued
hybrid logic with σ is a topic of current research.
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The notions of admissibility and various types of structural completeness for consequence
relations (considered as sets of rules) and logics (considered as sets of formulas closed under some
default rules) has received attention for many years. In this talk, we focus on straightforward
algebraic analogs. Our results apply to strongly algebraziable consequence relations (logics).

A quasivariety Q is a class of algebras defined by quasi-identities, i.e., by formulas of the
form

∧
si(x̄) ≈ ti(x̄)→ s(x̄) ≈ t(x̄). A variety is a class defined by identities, i.e., by formulas

of the form s(x̄) ≈ t(x̄). A quasi-identity q =
∧
si(x̄) ≈ ti(x̄)→ s(x̄) ≈ t(x̄) is admissible for a

quasivariety Q provided for every tuple ū of terms if Q |= ∧
si(ū) ≈ ti(ū) then Q |= s(ū) ≈ t(ū).

This condition says that q holds in free algebras for Q. And q is active for Q if there exists ū
such that Q |= ∧

si(ū) ≈ ti(ū). This is equivalent to the satisfiability of
∧
si(ū) ≈ ti(ū) in any

free algebra for Q. We say that Q is (actively1) structurally complete [(A)SC for short] if every
(active) admissible for Q quasi-identity holds in Q.

We are interested in decidability of (A)SC. In order to make the problem meaningful a
(quasi)variety should be given in a finitary way (we assume that the language of considered
algebras is finite). There are two basic ways to do this: by giving a finite axiomatization or by
giving a finite generating set of finite algebras. We undertake the later approach. Here is the
main problem.

Problem 1. Is it decidable whether the variety generated by a given finite algebra is (A)SC?

The parallel problem for quasivarieties was solved by Dywan and Bergman (SC) and by
Metcalfe and Röthlisberger (ASC).

Theorem 2 ([1, 2, 6]). It is decidable whether a finite set G of algebras in a finite language
generates the quasivariety wich is (A)SC.

As this fact is important also for varieties, let us look at it a bit closer. Interestingly, these
solutions are based on different algorithms. Dywan’s solution is based on the observation that if
k bounds the cardinality of members of G, then for SC it is enough to check only quasi-identities
with at most k variables. (His technique works as well for ASC but one has to check quasi-
identities with at most k ·kk variables.) Bergman’s (for SC) and Metcalfe’s and Röthlisberger’s
(for ASC) solutions are based on studying generating sets for quasivarieties, in particular on
relatively subdirectly irreducible algebras.

Theorem 3 ([1, 3, 6]). Let Q be a quasivariety, F a free algebra for Q of denumerable rank,
M its (as small as possible) subalgebra, and Q(F) be the quasivariety generated by F. Then

1. Q is SC if and only if every relatively subdirectly irreducible algebra in Q belongs to Q(F);

2. Q is ASC if and only for every every relatively subdirectly irreducible algebra S in Q the
algebra S×M belongs to Q(F).

Now if Q is generated by a finite set G of finite algebras of cardinality at most k, then
1In most papers the adjective almost is used.
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• Q(F) = Q(F(k)), where F(k) is a free algebra for Q of rank k;

• all relatively subdirectly irreducible algebras in Q embed into members of G;

• F(k) and M are finite: |F (k)| 6 aak

and |M | 6 |F (1)| 6 aa, where a = k|G|.

Thus, indeed Theorem 3 gives an alogrithm for deciding (A)SC for finitely generated quasi-
varieties. The situation for varieties is more complicated. Still, the above considerations give
algorithms for checking (A)SC for finitely generated varieties with finite computable bound
on the cardinality of subdirectly irreducible algebras. Such varieties are finitely generated as
quasivarieties. In particular, by Jónsson’s lemma, we get the following fact.

Corollary 4. It is decidable whether the congruence distributive variety given by a finite gen-
erating algebra is (A)SC.

In [1] Bergman observed that if the variety V generated by a finite algebra A is SC, then
every subdirectly irreducible algebra in V embeds into A. Thus for finitely generated SC
varieties there is a finite computable bound on the cardinality of subdirectly irreducible algebras.
Our main contribution is the following analogue for ASC.

Theorem 5. Let V be the ASC variety generated by an algebra A. If S is subdirectly irreducible
algebra in V, then |S| 6 |A|(|A|+1)·|A|2·|A| .

By Bergman’s and our results and by facts about subdirectly irreducible algebras in con-
gruence modular varieties obtained by Freese and McKenzie in [4], we can extend Corollary 4.

Corollary 6. It is decidable whether the congruence modular variery given by a finite generating
algebra is (A)SC.

Let us finish with the following problem.

Problem 7. Is it decidable whether a finite algebra A generates a variety in which all subdi-
rectly irreducible members have cardinality bounded by |A|(|A|+1)·|A|2·|A|?

If Problem 7 has a positive solution, then our main Problem 1 has a positive solution too.
Note however that, in general, it is undecidable whether a finite algebra generates a variety in
which all subdirectly irreducible members are finite [5].
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Many-valued modal logics, understood as the logics arising from Kripke models evaluated
over residuated lattices, is a field under development in which many questions remain open. In
particular, while their semantic definition is clear, formulating corresponding axiomatic systems
for these logics is one of the problems under study (see eg. [3, 4], [1], [8, 7], [10, 9]). We focus
in this work on a problem arising from [8, 7] concerning the modal logic of the Kripke frames
with a crisp accessibility relation evaluated over the standard  Lukasiewicz algebra [0, 1] L. In
particular, in the previous works, a Hilbert style axiomatic system is defined that is strongly
complete with respect to the usual relational semantics (i.e., complete also for infinite sets of
premises). This system, however, needs an infinitary inference rule (being naturally an infinitary
logic), and the question whether its finitary companion can be axiomatized (meaning, as usual,
axiomatized by a R.E set of rules), as can be done at a propositional level, remained open.

We can prove that such an axiomatization cannot exist for the global modal logic, by the
combination of three properties: undecidability of the global consequence over finite models of
the class, decidability of the propositional logic and completeness of the global consequence
(over arbitrary models) with respect to so-called witnessed models. In what follows we show a
sketch of the development of the above claim.

Let us remark that, in contrast to the more classical cases, where sometimes modal logics
are identified with their theories (and so, sets of formulas), in this more general context we
need to truly refer to the logic as a consequence relation. A logic L is a substitution invariant
consequence relation on the set of formulas. As usual, a logic L is finitary whenever

〈Γ, ϕ〉 ∈ L if and only if ∃∆ ⊆fin Γ s.t 〈∆,ϕ〉 ∈ L

Consequently, the finitary companion of a logic L, denoted by Lfin (and which can be
proven to be a logic too) is defined as the set

{〈Γ, ϕ〉 : ∃∆ ⊆fin Γ s.t 〈∆,ϕ〉 ∈ L}

By well known Craig’s lemma, we say that a logic L is axiomatizable when its set of
consequence relations is Recursively Enumerable. This coincides with the idea of characterizing
a logic axiomatized by a set of inference rules R as the minnimal one containing all rules in R.

As usual, let us consider a language including 2 and 3 modal operators. A frame is a
pair 〈W,R〉 where W is a set of so called worlds and R ⊆W ×W (we will write Rvw instead
of 〈v, w〉 ∈ R). We say that M = 〈W,R, e〉 is a (standard)  Lukasiewicz Kripke model
whenever 〈W,R〉 is a frame and e : Fm×W → [0, 1] L such that it is (world-wise) a propositional
homomorphism and moreover

e(2ϕ, v) =
∧

Rvw

e(ϕ,w) and e(3ϕ, v) =
∨

Rvw

e(ϕ,w)

We let K be the class of all  Lukasiewicz Kripke models, and Kω the class of all finite ones
(i.e., where W is a finite set).
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Fixing a class of  Lukasiewicz Kripke models C, we let LC1 be the logic given by the pairs
〈Γ, ϕ〉 such that, for any M ∈ C,

[∀w ∈W, ∀γ ∈ Γ e(γ,w) = 1] =⇒ [∀w ∈W e(ϕ,w) = 1].

Analogously, given a frame F, we let LF be the logic given by the pairs 〈Γ, ϕ〉 such that
〈Γ, ϕ〉 ∈ LC, for C being the collection of all  Lukasiewicz Kripke models whose underlying frame
is F.

In what follows, we assume Γ ∪ {ϕ} to be some arbitrary finite set of formulas.
To begin, the following is a particular case of the undecidability results presented in [11],

that contrast with the decidability results shown for local Gödel modal logics [2].

Lemma 2.1. It is undecidable whether 〈Γ, ϕ〉 ∈ Lfin
Kω .

It is not hard to show the following (it also holds more in general, as long as the underlying
propositional logic is decidable).

Lemma 2.2. Let F be a finite frame. Then it is decidable whether 〈Γ, ϕ〉 ∈ LF.

The idea of the proof is that, since F is finite, we can define a suitable translation from global
consequence relation over that particular frame to the  L propositional logic over an extended
set of propositional variables, that are associated to the worlds of F (finitely many!). Since the
latter is known to be decidable, so will be the consequence over F.

As a corollary, this implies that the problem of determining whether ϕ follows from Γ in all
 Lukasiewicz models of fixed cardinality is decidable. This corollary allows us to show that the
set {〈Γ, ϕ〉 ∈ Pfin(Fm)× Fm : 〈Γ, ϕ〉 6∈ LKω} is recursively enumerable. A procedure is that of
enumerating all finite sets of formulas, and testing them against frames of increasing cardinality,
which is decidable due to the previous corollary.

Together with the undecidability result stated in the beginning, this leads to the following
non-axiomatizability result:

Corollary 2.3. Lfin
Kω is not axiomatizable.

Observe, if it were to be so, we could easily enumerate {〈Γ, ϕ〉 ∈ Pfin(Fm)×Fm : 〈Γ, ϕ〉 ∈ LKω}.
Since from above we know that the set {〈Γ, ϕ〉 ∈ Pfin(Fm)× Fm : 〈Γ, ϕ〉 6∈ LKω} is recursively
enumerable, we would get that there is a decision procedure for Lfin

Kω , contradicting Lemma 2.1.
The next phase consists in seeing that, if there existed an axiomatization for Lfin

K , then there
would also be a axiomatization for Lfin

Kω , contradicting the previous lemma. From [6, Lemma 3]
we can prove that LK is complete with respect to witnessed models2, i.e., LK = LwitK, for

witK := {M ∈ K : ∀w ∈W, ∀ϕ ∈ Fm,∃w2ϕ , w2ϕ ∈W s.t

{
e(w,2ϕ) = e(w2ϕ

, ϕ), and

e(w,3ϕ) = e(w3ϕ
, ϕ)

}

A characterization of the fragment over finite models in terms of the general Lfin
K can be now

given using some particular formulas for controlling the depth of the models.

Lemma 2.4. 〈Γ, ϕ〉 ∈ Lfin
Kω if and only if for arbitrary p, q 6∈ Var(Γ, ϕ) it holds 〈Γ ∪Υ(p, q), ϕ∨

Ψ(p, q)〉 ∈ Lfin
K , where

1This is usually named the global consequence over the class of models C. We lighten the notation for a
better reading in this abstract, since this notion of modal logic is the main one in this work.

2Observe that in the translation from global modal logic to predicate logic, the formulas in the resulting
premises and consequence are all closed, thus meeting the premises of the referenced lemma.
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• Υ(p, q) := {20 ∨ (p↔ 2p),20 ∨ (2p↔ 3p), (q ↔ p& 2q)}

• Ψ(p, q) := p ∨ ¬p ∨ q ∨ ¬q.
Archimedeanicity of [0, 1] L, together with completeness with respect to witnessed models allows
us to get completeness of the deductions with the above structure with respect to finite models.

All the previous allow us to conclude our desired result:

Theorem 3.1. Lfin
K is not axiomatizable.

Observe if it were, we could enumerate it, and through the previous lemma, also enumerate
Lfin
Kω

 L
, contradicting the non-axiomatizability of this logic (Corollary 2.3).

Related questions & works

• It looks plausible that also the finitary companion of the so called local modal  Lukasiewicz
logic (where the consequence relation is defined by preserving truth at each world of the
model) is also not axiomatizable. To prove this, it would be enough to know whether
the extension of a local modal logic with the necessitation rule ϕ ` 2ϕ coincides with
the corresponding global logic. This seems, however, not immediate, given the intrinsic
infinitary character of the semantically-defined logic.

• The analogous result to the one detailled here can be proven for Modal Product Logic.
A similar approach can be followed up to Corollary 2.3. However, it is not possible to
proceed equally afterwards (it is not known whether product modal logic is complete with
respect to some “controllable” class of models, only results up to validity have been proven
[5]). Nevertheless, given that the 1-generated product subalgebras of [0, 1]Π are still in
the scope of the genneral formulation of Lemma 2.1 ([11]), it is possible to define a more
involved translation showing that the global modal logic over [0, 1]Π -valued Kripke models
cannot be axiomatized either, closing the main open problem from [10]. We will sketch
this construction in the conference.
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Abstract

This paper combines two classes of generalized logics, one of which is the class of weakly
implicative logics introduced by Cintula and the other of which is the class of gaggle logics
introduced by Dunn. For this purpose, we introduce implicational tonoid logics. First, we
define several implicational tonoid logics in general and provide their algebraic semantics.
Next, we introduce relational semantics, called Routley-Meyer-style semantics, for those
implicational tonoid logics.

1 Introduction

One important trend in alternative logics is to introduce abstract logics with more general
structures. In this setting, the logical connective “implication” is very important because
systems of logic are often distinguished by the properties of their implications. In this paper, we
focus on two classes of generalized logics, one is the class of weakly implicative logics introduced
by Cintula, and the other is the class of gaggle logics introduced by Dunn. We will explore a
combination of these two approaches, and for this purpose we introduce implicational tonoid
logics. These logics can be regarded as both weakly implicative and partial gaggle-based logics.

Implications typically all share at least the underlying properties of reflexivity (ϕ implies ϕ
is provable) and transitivity (if ϕ implies ψ and ψ implies χ are both provable, then ϕ implies χ
is also provable). This suggests an abstraction based on preordered sets (A,4). But when A is
an algebra, i.e., is outfitted with various operations of various degrees, we want an equivalence
≡ to be a congruence as well. Preordered sets can be regarded as partially ordered sets by
defining an equivalence relation ≡ so that a ≡ b iff a 4 b and b 4 a.

Rasiowa clearly had this in mind when she [5] introduced the idea of an implicative algebra
as a structure (A,V,→), satisfying: 1. a → a = V; 2. if a → b = V and b → c = V, then
a→ c = V; 3. if a→ b = V and b→ a = V, then a = b; 4. a→ V = V. The motivating idea is
that if we define a ≤ b iff a → b = V then we get a partial-order. But it had a rather narrow
scope compared to what it might cover now since Rasiowa’s approach depends on the algebra
having a greatest element V. This is appropriate for classical logic and intuitionistic logic.

But by the turn of the last millennium several logicians have investigated much weaker
logics which do not share these properties. One of these is P. Cintula. He [1] introduced weakly
implicative logics as a generalization of the implicative logics of Rasiowa [5]. Cintula generalizes
the idea of an implicative algebra to in effect an “implicative matrix.” A matrix (A,→, D) from
an algebra in having a “designated” subset of elements D ⊆ A. This allows Cintula to define a
preorder relation 4 based on the implication operation → by setting for any pair of elements
a, b in A, a 4 b if and only if a→ b ∈ D (see Cintula & Noguera [2], pp. 104–105).

Another approach to implicative logics is due to one of the authors of this paper (Dunn).
He [3] introduced gaggles as the acronym for “generalized Galois logics,” which are a class of
algebraic structures providing a unified approach to the semantics of non-classical logics. Origi-
nally the underlying structures were required to be distributive lattices, but he soon generalized
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this to include lattices and partially-ordered sets. In particular, he introduced partial gaggles as
a name for gaggles with an underlying partial order.1 Gaggles are based on a vast generalization
of the well-known algebraic notion of a Galois connection, and includes residuation as a special
case which allows one to define an implication, actually two implications, using: b ≤ a → c iff
a ◦ b ≤ c iff a ≤ c ← b2 (Residuation). However it is clearly possible to ignore the operation ◦
and have just b ≤ a→ c iff a ≤ c← b.

Partial gaggles were first introduced by Dunn [4], and tonoids were also introduced there as
a weakening of gaggles, even of partial gaggles, so as to replace residuation with the requirement
that operations preserve, or co-preserve, the partial-order, and allowing this to vary from place
to place. But even though implication was discussed in the context of both partial gaggles and
tonoids, implicational tonoids were not explicitly introduced. This gap explains in large part
why we have written the present paper.

2 Implicational tonoid logics: general cases

Here, we briefly introduce some important definitions and related results.

Definition 1 (Implicational tonoid logic). Let L be a propositional language, such that
(⇒; 2) ∈ L and let L be a logic in L. We say that L is an implicational tonoid
logic iff the following consecutions are elements of L: (R, reflexivity) `L ϕ ⇒ ϕ; (MP,
modus ponens) ϕ ⇒ ψ, ϕ `L ψ; (T, transitivity) ϕ ⇒ ψ, ψ ⇒ χ `L ϕ ⇒ χ;
(Toni

#, tonicity) ϕ⇒ ψ `L #(χ1, . . . , χi−1, ϕ, . . . , χn) ⇒ #(χ1, . . . , χi−1, ψ, . . . , χn) or
#(χ1, . . . , χi−1, ψ, . . . , χn)⇒ #(χ1, . . . , χi−1, ϕ, . . ., χn) for each (#, n) ∈ L and each i ≤ n.

Let # be an n-ary connective. By #n(~ϕ, ψi), we denote the application of # to n arguments,
where ~ϕ is a sequence of n− 1 elements of VAR and ψ ∈ VAR is the i-th argument of #, and
similarly for #n(~ϕ, ψi, χj). We recall the definition of a weakly implicative logic. This will give
us a chance to reveal an interesting relationship between tonoid logics and weakly implicative
logics.

Definition 2 (Cintula (& Noguera) ([1, 2]), Weakly implicative logic). L is said to be a weakly
implicative logic iff (R), (MP), (T ), and the following consecution are elements of L: for each
(#, n), a part of L, and each i ≤ n, (sCng i

#, symmetrized congruence) ϕ⇔ ψ `L #n(~χ, ϕi)⇒
#n(~χ, ψi).

Theorem 3. Implicational tonoid logics are weakly implicative logics.

We then define some specific but still abstract implicational tonoid logics with each gener-
alization of all the Galois and dual Galois connections and residuation and dual residuation.

Definition 4.

1. (Implicational partial Gaggle logic) L is said to be an implicational partial Gaggle logic if
it is an implicational tonoid logic satisfying any of the following: for each (f, n), (g, n) ∈ L

1It should be emphasized that these are not partially-ordered algebras in the standard sense which requires
that the operations are preserved under the order. These are generalizations of this idea since each operation
either preserves or inverts the order, and that can vary from place to place in the same operation. Thus e.g.,
a ≤ b implies b → c ≤ a → c and c → a ≤ c → b. This led to the idea of a tonoid and the tonicity types of its
elements. Cintula’s weakly implicative logics do not have this property built into them.

2The forward arrow and the backward arrow are respectively the right and left residuals. The last is
sometimes written as b c, or something similar to avoid reversing the order.

2
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and each i ≤ n, (GC, Galois connected contraposition) ϕ⇒ fn(~χ, ψi) a`L ψ ⇒ gn(~χ, ϕi);
(dGC, dual GC ) fn(~χ, ϕi) ⇒ ψ a`L gn(~χ, ψi) ⇒ ϕ; (RC, residuated contraposition)
fn(~χ, ϕi) ⇒ ψ a`L ϕ ⇒ gn(~χ, ψi); (dRC, dual RC ) ϕ ⇒ fn(~χ, ψi) a`L gn(~χ, ϕi) ⇒ ψ,
where the tonicity types of f and g are the same and, in particular, their tonicity type of
i-th arguments is antitone in each (GC ) and (dGC ). The tonicity types of f and g are
different from each other in an argument distinct from i and, in particular, their tonicity
type of i-th arguments is isotone in each (RC ) and (dRC ).

2. (Implicational residuated partial Gaggle logic) L is said to be an implicational resid-
uated partial Gaggle logic if it is an implicational tonoid logic satisfying: for each
(f, n), (g, n), (h, n) ∈ L and each i, j ≤ n, (RES, residuation) fn(~χ, ϕi, ψj) ⇒ δ a`L

ψ ⇒ gn(~χ, ϕi, δj) a`L ϕ⇒ hn(~χ, ψi, δj), where the tonicity types of g and h are the same
and the tonicity types of f and g (h resp.) are different from each other in an argument
distinct from j. In particular, the tonicity types of f are isotone in its i-th and j-th
arguments and the tonicity types of each g and h are antitone in its i-th argument and
isotone in its j-th argument.

3. (Implicational dual residuated partial Gaggle logic) L is said to be an implicational dual
residuated partial Gaggle logic if it is an implicational tonoid logic satisfying: for each
(f, n), (g, n), (h, n) ∈ L and each i, j ≤ n, (dRES, dual residuation) δ ⇒ fn(~χ, ϕi, ψj) a`L

gn(~χ, δi, ϕj)⇒ ψ a`L hn(~χ, δi, ψj)⇒ ϕ, where the tonicity types of g and h are the same
and the tonicity types of f and g (h resp.) are different from each other in an argument
distinct from i. In particular, the tonicity types of f are isotone in its i-th and j-th
arguments and the tonicity types of each g and h are antitone in its j-th argument and
isotone in its i-th argument.

Theorem 5 (Strong completeness). L, an implicational tonoid logic, is strongly complete w.r.t.
L-matrices.

Corollary 6. L, an implicational (residuated, dual residuated) partial Gaggle logic, is strongly
complete w.r.t. L-matrices.

Moreover, we can introduce relational semantics called Routley-Meyer-style semantics and
prove completeness.

Definition 7.

1. (Implicational Routley-Meyer-style (R-M) frame) For an implicational partially ordered
set matrix A = (A,≤,⇒A;DA), an implicational Routley-Meyer-style frame (briefly,
R-M⇒ frame) for A is meant a structure U = (U,≤, R⇒A ;D), where (U,≤) is a par-
tially ordered set and R⇒A ⊆ U3 satisfies the postulate below: (p≤) a ≤ b iff there is
c ∈ D such that R⇒A(a, b; c), briefly R⇒A(a, b;D).

2. (L-R-M⇒ frame) As in 1, for L an implicational tonoid logic (an implicational (residuated,
dual residuated) partial Gaggle logic resp.), we can define L-R-M⇒ frame.

Theorem 8 (Strong completeness). L is strongly complete w.r.t. the class of all L-R-M frames.
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